Transforming growth factor–β1 (TGF-β1) is inextricably linked to regulatory T cell (T reg ) biology. However, precisely untangling the role for TGF-β1 in T reg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of T regs . Among CD4 + T cells, T regs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for T reg -derived TGF-β1 in T reg immunosuppression, TGF-β1 signaling is crucial for T reg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including T H 17 cells. Here, we will review TGF-β1 signaling in T reg development and function and discuss knowledge gaps, future research, and the TGF-β1/T reg axis in the context of cancer immunotherapy and fibrosis.
Sex bias exists in the development and progression of non-reproductive organ cancers, but the underlying mechanisms are enigmatic. Studies so far have focused largely on sexual dimorphisms in cancer biology and socioeconomic factors. Here, we establish a role for CD8 + T cell-dependent anti-tumor immunity in mediating sex differences in tumor aggressiveness, which is driven by the gonadal androgen but not sex chromosomes. A male bias exists in the frequency of intratumoral antigen-experienced Tcf7 /TCF1 + progenitor exhausted CD8 + T cells that are devoid of effector activity as a consequence of intrinsic androgen receptor (AR) function. Mechanistically, we identify a novel sex-specific regulon in progenitor exhausted CD8 + T cells and a pertinent contribution from AR as a direct transcriptional trans-activator of Tcf7 /TCF1. The T cell intrinsic function of AR in promoting CD8 + T cell exhaustion in vivo was established using multiple approaches including loss-of-function studies with CD8-specific Ar knockout mice. Moreover, ablation of the androgen-AR axis rewires the tumor microenvironment to favor effector T cell differentiation and potentiates the efficacy of anti-PD-1 immune checkpoint blockade. Collectively, our findings highlight androgen-mediated promotion of CD8 + T cell dysfunction in cancer and imply broader opportunities for therapeutic development from understanding sex disparities in health and disease.
Excessive pro-inflammatory cytokine production in the bone marrow has been associated with the pathogenesis of myelodysplastic syndromes. We herein investigated the involvement of toll-like receptors and their endogenous ligands in the induction/maintenance of the inflammatory process in the marrow of patients with myelodysplastic syndromes. We evaluated the expression of toll-like receptors in marrow monocytes of patients (n=27) and healthy controls (n=25) by flow-cytometry and also assessed the activation of the respective signaling using a realtime polymerase chain reaction-based array. We measured the high mobility group box-1 protein, a toll-like receptor-4 ligand, in marrow plasma and long-term bone marrow culture supernatants by an enzyme-linked immunosorbent assay and we performed cross-over experiments using marrow plasma from patients and controls in the presence/absence of a toll-like receptor-4 inhibitor to evaluate the pro-inflammatory cytokine production by chemiluminescence. We assessed the apoptotic cell clearance capacity of patients' macrophages using a fluorescence microscopy-based assay. We found over-expression of toll-like receptor-4 in patients' marrow monocytes compared to that in controls; this over-expression was associated with up-modulation of 53 genes related to the respective signaling. Incubation of patients' monocytes with autologous, but not with normal, marrow plasma resulted in over-production of pro-inflammatory cytokines, an effect that was abrogated by the toll-like receptor-4 inhibitor suggesting that the pro-inflammatory cytokine production in myelodysplastic syndromes is largely mediated through toll-like receptor-4. The levels of high mobility group box-1 protein were increased in patients' marrow plasma and culture supernatants compared to the levels in controls. Patients' macrophages displayed an impaired capacity to engulf apoptotic cells and this defect was associated with excessive release of high mobility group box-1 protein by dying cells. A primary apoptotic cell clearance defect of marrow macrophages in myelodysplastic syndromes may contribute to the induction/maintenance of the inflammatory process through aberrant release of molecules inducing toll-like receptor-4 such as high mobility group box-1 protein.Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine production
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that exist at very low numbers in healthy subjects but can expand significantly in malignant, infectious, and chronic inflammatory diseases. These cells are characterized as early-MDSCs, monocytic-MDSCs, and polymorphonuclear-MDSCs and can be studied on the basis of their immunophenotypic characteristics and their functional properties to suppress T-cell activation and proliferation. MDSCs have emerged as important contributors to tumor expansion and chronic inflammation progression by inducing immunosuppressive mechanisms, angiogenesis and drug resistance. Most experimental and clinical studies concerning MDSCs have been mainly focused on solid tumors. In recent years, however, the implication of MDSCs in the immune dysregulation associated with hematologic malignancies, immune-mediated cytopenias and allogeneic hemopoietic stem cell transplantation has been documented and the potential role of these cells as biomarkers and therapeutic targets has started to attract a particular interest in hematology. The elucidation of the molecular and signaling pathways associated with the generation, expansion and function of MDSCs in malignant and immune-mediated hematologic diseases and the clarification of mechanisms related to the circulation and the crosstalk of MDSCs with malignant cells and other components of the immune system are anticipated to lead to novel therapeutic strategies. This review summarizes all available evidence on the implication of MDSCs in hematologic diseases highlighting the challenges and perspectives arising from this novel field of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.