Members of the Notch gene family have been shown to play an important role in the control of cell fate in many developmental systems. We hypothesized that the fate of the male germ line stem cells may also be mediated through the Notch signaling pathway. We therefore sought to determine whether the components of the Notch pathway are expressed in the mouse testis. Western blot analysis revealed the expression of three Notch receptors (Notch 1, Notch 2, and Notch 3), Notch ligands (Jagged 1, Jagged 2, and Delta 1), and presenilin 1 (PS1) in neonatal mouse testis. We then examined their cellular localization by immunohistochemical analysis of cocultures of spermatogonia and Sertoli cells. The 3 Notch receptors were found to be expressed in spermatogonia. Sertoli cells expressed only Notch 2 receptor. Among the Notch ligands, Delta 1 and Jagged 1 were localized exclusively in spermatogonia and Sertoli cells, respectively. PS1 was apparent in both spermatogonia and Sertoli cells. The presence of Notch receptors and Notch ligands in spermatogonia and Sertoli cells indicates that these cells are capable of responding to and eliciting Notch signaling during the process of spermatogenesis. Key words: Cell fate, delta, jagged, presenilin, spermatogenesis.
Telomeres, the noncoding sequences at the ends of chromosomes, progressively shorten with each cellular division. Spermatozoa have very long telomeres but they lack telomerase enzymatic activity that is necessary for de novo synthesis and addition of telomeres. We performed a telomere restriction fragment analysis to compare the telomere lengths in immature rat testis (containing type A spermatogonia) with adult rat testis (containing more differentiated germ cells). Mean telomere length in the immature testis was significantly shorter in comparison to adult testis, suggesting that type A spermatogonia probably have shorter telomeres than more differentiated germ cells. Then, we isolated type A spermatogonia from immature testis, and pachytene spermatocytes and round spermatids from adult testis. Pachytene spermatocytes exhibited longer telomeres compared to type A spermatogonia. Surprisingly, although statistically not significant, round spermatids showed a decrease in telomere length. Epididymal spermatozoa exhibited the longest mean telomere length. In marked contrast, telomerase activity, measured by the telomeric repeat amplification protocol was very high in type A spermatogonia, decreased in pachytene spermatocytes and round spermatids, and was totally absent in epididymal spermatozoa. In summary, these results indicate that telomere length increases during the development of male germ cells from spermatogonia to spermatozoa and is inversely correlated with the expression of telomerase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.