The skin of many amphibians produces a large repertoire of antimicrobial peptides that are crucial in the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, knowledge about peptides with antimicrobial properties is limited to a few species. Here we used LC-MS-MS to analyze samples of Hypsiboas pulchellus skin with the aim to identify antimicrobial peptides in the mass range of 1000 to 2000 Da. Twenty-three novel sequences were identified by MS, three of which were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Hp-1971, P2-Hp-1935, and P3-Hp-1891, inhibited the growth of two ATCC strains: Escherichia coli (MIC: 16, 33, and 17 μM, respectively) and Staphylococcus aureus (MIC: 8, 66, and 17 μM, respectively). P1-Hp-1971 and P3-Hp-1891 were the most active peptides. P1-Hp-1971, which showed the highest therapeutic indices (40 for E. coli and 80 for S. aureus), is a proline-glycine-rich peptide with a highly unordered structure, while P3-Hp-1891 adopts an amphipathic α-helical structure in the presence of 2,2,2-trifluoroethanol and anionic liposomes. This is the first peptidomic study of Hypsiboas pulchellus skin secretions to allow the identification of antimicrobial peptides.
A series of peptide analogs based on region 6-22 of Plantaricin 149 sequence were synthesized. The interaction between these analogs and phospholipid-polydiacetylene vesicles was investigated to evaluate the ability of the bioassay to detect differences in the interaction of the peptides with dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylcholine vesicles, associated with amino acid substitution and N-terminal conjugation of the sequences with short fatty acids (8 and 12 carbon atoms). Fatty acid conjugation of peptides with low antimicrobial activity resulted in lipopeptides with improved activity against strains of Staphylococcus aureus and Listeria monocytogenes. The length of the fatty acid determined the bacterial specificity, and the conjugation with n-octanoic acid yielded the most active analog (C8-CT) against Staphylococcus aureus strain (MIC: 1.0 μm) while the conjugation with n-dodecanoic acid (C12-CT) was optimal for Listeria monocytogenes strain (MIC: 2.0 μm). In contrast, the substitution of Phe by Trp had an unfavorable effect on the antimicrobial activity. Hemolysis tests and membrane interaction studies with dipalmitoylphosphatidylcholine-polydiacetylene vesicles showed that lipopeptides interact to a greater extent with both biological and biomimetic membranes. Also, a good correlation was found between antimicrobial activity against Staphylococcus aureus strain and % colorimetric response values with dipalmitoylphosphatidylglycerol-polydiacetylene vesicles.
Amphibians´ skin produces a diverse array of antimicrobial peptides that play a crucial role as the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, current knowledge about the presence of peptides with antimicrobial properties is limited to a only few species. Here we used LC-MS-MS to identify antimicrobial peptides with masses ranging from 1000 to 4000 Da from samples of skin secretions of Leptodactylus latrans (Anura: Leptodactylidae). Three novel amino acid sequences were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Ll-1577, P2-Ll-1298, and P3-Ll-2085, inhibited the growth of two ATCC strains, namely Escherichia coli and Staphylococcus aureus. P3-Ll-2085 was the most active peptide. In the presence of trifluoroethanol (TFE) and anionic liposomes, it adopted an amphipathic α-helical structure. P2-Ll-1298 showed slightly lower activity than P3-Ll-2085. Comparison of the MIC values of these two peptides revealed that the addition of seven amino acid residues (GLLDFLK) on the N-terminal of P2-Ll-1298 significantly improved activity against both strains. P1-Ll-1577, which remarkably is an anionic peptide, showed interesting antimicrobial activity against E. coli and S. aureus strain, showing marked membrane selectivity and non-hemolysis. Due to this, P1-L1-1577 emerges as a potential candidate for the development of new antibacterial drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.