As in other cultivated species, dormancy can be seen as a problem in cereal production, either due to its short duration or to its long persistence. Indeed, cereal crops lacking enough dormancy at harvest can be exposed to pre-harvest sprouting damage, while a long-lasting dormancy can interfere with processes that rely on rapid germination, such as malting or the emergence of a uniform crop. Because the ancestors of cereal species evolved under very diverse environments worldwide, different mechanisms have arisen as a way of sensing an appropriate germination environment (a crucial factor for winter or summer annuals such as cereals). In addition, different species (and even different varieties within the same species) display diverse grain morphology, allowing some structures to impose dormancy in some cereals but not in others. As in seeds from many other species, the antagonism between the plant hormones abscisic acid and gibberellins is instrumental in cereal grains for the inception, expression, release and re-induction of dormancy. However, the way in which this antagonism operates is different for the various species and involves different molecular steps as regulatory sites. Environmental signals (i.e. temperature, light quality and quantity, oxygen levels) can modulate this hormonal control of dormancy differently, depending on the species. The practical implications of knowledge accumulated in this field are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.