Context. Runaway massive stars are O-and B-type stars with high spatial velocities with respect to the interstellar medium. These stars can produce bowshocks in the surrounding gas. Bowshocks develop as arc-shaped structures, with bows pointing to the same direction as the stellar velocity, while the star moves supersonically through the interstellar gas. The piled-up shocked matter emits thermal radiation and a population of locally accelerated relativistic particles is expected to produce non-thermal emission over a wide range of energies. Aims. We aim to model the non-thermal radiation produced in these sources. Methods. Under some assumptions, we computed the non-thermal emission produced by the relativistic particles and the thermal radiation caused by free-free interactions, for O4I and O9I stars. We applied our model to ζ Oph (HD 149757), an intensively studied massive star seen from the northern hemisphere. This star has spectral type O9.5V and is a well-known runaway. Results. Spectral energy distributions of massive runaways are predicted for the whole electromagnetic spectrum. Conclusions. We conclude that the non-thermal radiation might be detectable at various energy bands for relatively nearby runaway stars, especially at high-energy gamma rays. Inverse Compton scattering with photons from the heated dust gives the most important contribution to the high-energy spectrum. This emission approaches Fermi sensitivities in the case of ζ Oph.
Fast magnetic reconnection may occur in different astrophysical sources, producing flare-like emission and particle acceleration. Currently, this process is being studied as an efficient mechanism to accelerate particles via a first-order Fermi process. In this work we analyse the acceleration rate and the energy distribution of test particles injected in three-dimensional magnetohydrodynamical (MHD) domains with largescale current sheets where reconnection is made fast by the presence of turbulence. We study the dependence of the particle acceleration time with the relevant parameters of the embedded turbulence, i.e., the Alfvén speed V A , the injection power P inj and scale k inj (k inj = 1/l inj ). We find that the acceleration time follows a power-law dependence with the particle kinetic energy: t acc ∝ E α , with 0.2 < α < 0.6 for a vast range of values of c/V A ∼ 20 − 1000. The acceleration time decreases with the Alfvén speed (and therefore with the reconnection velocity) as expected, having an approximate dependence t acc ∝ (V A /c) −κ , with κ ∼ 2.1 − 2.4 for particles reaching kinetic energies between 1 − 100 m p c 2 , respectively. Furthermore, we find that the acceleration time is only weakly dependent on the P inj and l inj parameters of the turbulence. The particle spectrum develops a high-energy tail which can be fitted by a hard power-law already in the early times of the acceleration, in consistency with the results of kinetic studies of particle acceleration by magnetic reconnection in collisionless plasmas.
Context. The high-mass microquasar Cyg X-1, the best-established candidate for a stellar-mass black hole in the Galaxy, has been detected in a flaring state at very high energies (VHE), E > 200 GeV, by the Atmospheric Cherenkov Telescope MAGIC. The flare occurred at orbital phase φ = 0.91, where φ = 1 is the configuration with the black hole behind the companion high-mass star, when the absorption of gamma-ray photons by photon-photon annihilation with the stellar field is expected to be highest. Aims. We aim to set up a model for the high-energy emission and absorption in Cyg X-1 that can explain the nature of the observed gamma-ray flare. Methods. We study the gamma-ray opacity due to pair creation along the whole orbit, and for different locations of the emitter. Then we consider a possible mechanism for the production of the VHE emission.Results. We present detailed calculations of the gamma-ray opacity and infer from these calculations the distance from the black hole where the emitting region was located. We suggest that the flare was the result of a jet-clump interaction where the decay products of inelastic p − p collisions dominate the VHE outcome. Conclusions. We are able to reproduce the spectrum of Cyg X-1 during the observed flare under reasonable assumptions. The flare may be the first event of jet-cloud interaction ever detected at such high energies.
Fast radio bursts are mysterious transient sources likely located at cosmological distances. The derived brightness temperatures exceed by many orders of magnitude the self-absorption limit of incoherent synchrotron radiation, implying the operation of a coherent emission process. We propose a radiation mechanism for fast radio bursts where the emission arises from collisionless Bremsstrahlung in strong plasma turbulence excited by relativistic electron beams. We discuss possible astrophysical scenarios in which this process might operate. The emitting region is a turbulent plasma hit by a relativistic jet, where Langmuir plasma waves produce a concentration of intense electrostatic soliton-like regions (cavitons). The resulting radiation is coherent and, under some physical conditions, can be polarised and have a power-law distribution in energy. We obtain radio luminosities in agreement with the inferred values for fast radio bursts. The timescale of the radio flare in some cases can be extremely fast, of the order of 10 −3 s. The mechanism we present here can explain the main features of fast radio bursts and is plausible in different astrophysical sources, such as gamma-ray bursts and some Active Galactic Nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.