The human brain can be interpreted mathematically as a linear dynamical system that shifts through various cognitive regions promoting more or less complicated behaviors. The dynamics of brain neural network play a considerable role in cognitive function and therefore of interest in the bid to understand the learning processes and the evolution of possible disorders. The mathematical theory of systems and control makes available procedures, concepts, and criteria that can be applied to ease the perception of the dynamic processes that administer the evolution of the brain with learning and its control with treatment in case of disorder. In this work, a geometric study through the conception of exact controllability is comprehended to detect the minimum set and the location of the driving nodes of learning. We will describe the different roles of the nodes in the control of the paths of brain networks and show the transition of some driving nodes and the preservation of the rest in the course of learning in patients with some learning disability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.