The event of giving birth is an essential part of animal production. In dairy cattle production, there are substantial economical and welfare-related challenges arising around the time of parturition, and hence increased focus on efficient management of the calving cow. Drawing on the research literature on prepartum maternal behavior, this review compares cattle to other members of the ungulate clade with the aim of understanding the biological basis of bovine prepartum behavior with main emphasis on dairy cows. Ultimately, this knowledge may be used in future development of housing systems and recommendations for the management of calving cows. Maternal prepartum behavior varies among species, but the final goal of ungulate mothers is the same: ensuring a calm parturition and optimal environment for the onset of postpartum maternal behavior by locating an appropriate birth site, with low risk of predators, disturbances and mistaken identity of offspring. Features of chosen birth sites vary among species and depend largely on the environment, as ungulate females display a considerable ability to adapt to their surroundings. However, within commercial housing conditions in dairy production, the animals’ ability to adapt behaviorally appears to be challenged. Confinement alongside high stocking densities leave little room to express birth-site selection behavior, posing a high risk of agonistic social behavior, disturbances, and mismothering, as well as exposure to olfactory cues influencing both prepartum and postpartum maternal behavior. Dairy cows are thus exposed to several factors in a commercial calving environment, which may thwart their maternal motivations and influence their behavior. In addition, prepartum cattle may be more affected by olfactory cues than other ungulate species (e.g., sheep) because they are attracted to birth fluids already before calving. Hence, providing dairy cows with an environment where they can perform the maternal behavior they are motivated for, may aid a calm and secure calving and provide optimal surroundings for postpartum maternal behavior. Future research should focus on designing motivation-based housing systems allowing freedom to express prepartum maternal behavior and investigate in more detail the effects of the environment on the welfare of calving cows and their offspring.
In order to improve animal welfare it is recommended that dairy farmers move calving cows from the herd to individual pens when calving is imminent. However, the practicality of moving cows has proven a challenge and may lead to disturbance of the cows rather than easing the process of calving. One solution may be to allow the cow to seek isolation prior to calving. This study examined whether pre-parturient dairy cows will isolate in an individual calving pen placed in a group calving setting and whether a closing gate in this individual calving pen will cause more cows to isolate prior to calving. Danish Holstein cows (n = 66) were housed in groups of six in a group pen with access to six individual calving pens connected to the group area. Cows were trained to use one of two isolation opportunities i.e. individual calving pens with functional closing gates (n = 35) allowing only one cow access at a time, or individual calving pens with permanently open gates allowing free cow traffic between group area and individual pen (n = 31). The response variables were calving site, calving behaviour and social behaviour. Unexpectedly, a functional gate did not facilitate isolation seeking, perhaps because the cows were not able to combine a learnt response with the motivation to isolate. Dominant cows had the highest chance of calving in an individual calving pen. If an alien calf was present in the group pen or any of the individual pens, cows were less likely to calve in an individual calving pen. Future studies should allow cows easy access to an individual calving pen and explore what motivates pre-parturient cows to seek isolation in order to facilitate voluntary use of individual calving pens.
Vision, hearing, olfaction, taste, and touch comprise the sensory modalities of most vertebrates. With these senses, the animal receives information about its environment. How this information is organized, interpreted, and experienced is known as perception. The study of the sensory abilities of animals and their implications for behavior is central not only to ethology but also to animal welfare. Sensory ability, perception, and behavior are closely linked. Horses and humans share the five most common sensory modalities, however, their ranges and capacities differ, so that horses are unlikely to perceive their surroundings in a similar manner to humans. Understanding equine perceptual abilities and their differences is important when horses and human interact, as these abilities are pivotal for the response of the horse to any changes in its surroundings. This review aims to provide an overview of the current knowledge on the sensory abilities of horses. The information is discussed within an evolutionary context and also includes a practical perspective, outlining potential ways to mitigate risks of injuries and enhance positive horse-human interactions. The equine sensory apparatus includes panoramic visual capacities with acuities similar to those of red-green color-blind humans as well as aural abilities that, in some respects exceed human hearing and a highly developed sense of smell, all of which influence how horses react in various situations. Equine sensitivity to touch has been studied surprisingly sparingly despite tactile stimulation being the major interface of horse training. We discuss the potential use of sensory enrichment/positive sensory stimulation to improve the welfare of horses in various situations e.g. using odors, touch or sound to enrich the environment or to appease horses. In addition, equine perception is affected by factors such as breed, individuality, age, and in some cases even color, emphasizing that different horses may need different types of management. Understanding the sensory abilities of horses is central to the emerging discipline of equitation science, which comprises the gamut of horse-human interactions. Therefore, sensory abilities continue to warrant scientific focus, with more research to enable us to understand different horses and their various needs.
Social animals should have plenty of opportunities to learn from conspecifics, but most studies have failed to document social learning in horses. This study investigates whether young Icelandic horses can learn a spatial detour task through observation of a trained demonstrator horse of either the same age (Experiments 1 and 2, n = 22) or older (Experiment 3, n = 24). Observer horses were allowed to observe the demonstrator being led three times through the detour route immediately before being given the opportunity to solve the task themselves. Controls were allowed only to observe the demonstrator horse eating at the final position, but not the demonstration of the route. Although we found a tendency towards better performance by observer horses in the second experiment, we were unable to repeat this result in a similar set-up with a new group of horses and older, dominant demonstrator horses. We conclude that horses exposed to prior demonstration did not perform better than control horses in solving spatial detour tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.