Pseudomonas aureofaciens Q2-87 produces the antibiotic 2,4-diacetophloroglucinol (Phl), which inhibits Gaeumannomyces graminis var. tritici and other fungi in vitro. Strain Q2-87 also provides biological control of take-all, a root disease of wheat caused by this fungus. To assess the role of Phl in the antifungal activity of strain Q2-87, a genetic analysis of antibiotic production was conducted. Two mutants of Q2-87 with altered antifungal activity were isolated by site-directed mutagenesis with TnS. One mutant, Q2-87::Tn5-1, did not inhibit G. graminis var. tritici in vitro and did not produce Phl. Two cosmids were isolated from a genomic library of the wild-type strain by probing with the mutant genomic fragment. Antifungal activity and Phl production were coordinately restored in Q2-87::Tn5-1 by complementation with either cosmid. Mobilization of one of these cosmids into two heterologous Pseudomonas strains conferred the ability to synthesize Phl and increased their activity against G. graminis var. tritici, Pythium ultimum, and Rhizoctonia solani in vitro. Subcloning and deletion analysis of these cosmids identified a 4.8-kb region which was necessary for Phl synthesis and antifungal activity.
Blepharitis and dry eye disease have long been viewed as two distinct diseases with overlapping presentations and separate etiologies. Evaporative dry eye, although frequently associated with aqueous deficiency, is also considered a separate entity. We propose viewing dry eye, both evaporative and insufficiency, as the natural sequelae of chronic blepharitis induced by biofilm. We suggest describing this one chronic disease as dry eye blepharitis syndrome (DEBS). The disease process begins when normal flora bacteria colonize the lid margin beginning shortly after birth. This colonization accompanies the development of a biofilm on the lid margin. As years pass, the biofilm matures, and the increased bacterial population initiates the production of inflammatory virulence factors, such as exotoxins, cytolytic toxins, and super-antigens, which persist on the lid margin for the rest of the patient’s life. These virulence factors cause early follicular inflammation and later, meibomian gland dysfunction followed by aqueous insufficiency, and finally, after many decades, loss of the dense collagen in the tarsal plate. We proposed four stages of DEBS, which correlate with the clinical manifestations of folliculitis (anterior blepharitis), meibomitis (meibomian gland dysfunction), lacrimalitis (aqueous deficiency), and lid structure damage evidenced by increased lid laxity resulting in entropion, ectropion, and floppy eyelid syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.