Haploinsufficiency of ribosomal proteins (RPs) has been proposed to be the common basis for the anemia observed in Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome with loss of chromosome 5q [del(5q) MDS]. We have modeled DBA and del(5q) MDS in zebrafish using antisense morpholinos to rps19 and rps14, respectively, and have demonstrated that, as in humans, haploinsufficient levels of these proteins lead to a profound anemia. To address the hypothesis that RP loss results in impaired mRNA translation, we treated Rps19 and Rps14-deficient embryos with the amino acid L-leucine, a known activator of mRNA translation. This resulted in a striking improvement of the anemia associated with RP loss. We confirmed our findings in primary human CD34 ؉ cells, after shRNA knockdown of RPS19 and RPS14. Furthermore, we showed that loss of Rps19 or Rps14 activates the mTOR pathway, and this is accentuated by L-leucine in both Rps19 and Rps14 morphants. This effect could be abrogated by rapamycin suggesting that mTOR signaling may be responsible for the improvement in anemia associated with L-leucine. Our studies support the rationale for ongoing clinical trials of L-leucine as a therapeutic agent for DBA, and potentially for patients with del(5q) MDS. (Blood. 2012; 120(11):2214-2224) IntroductionDiamond-Blackfan anemia (DBA; MIM# 105650) is a congenital bone marrow failure syndrome of childhood manifested as normochromic macrocytic anemia with absence or insufficient erythroid precursors in the bone marrow. 1,2 Twenty-five percent of DBA patients have mutations in the RPS19 gene, which encodes a component of the 40S ribosomal subunit. 3,4 A further 25% of DBA patients have been shown to have mutations in other ribosomal protein genes, 5 supporting the hypothesis that DBA is a disease of altered ribosome assembly or function. DBA shares a number of its clinical features with several other congenital syndromes that also carry heterozygous mutations affecting ribosome biogenesis, such as Shwachman-Diamond syndrome (SDS), cartilage-hair hypoplasia syndrome, and dyskeratosis congenita (DC) suggesting that all of these conditions share at least some common pathogenic mechanisms; they have thus been termed "ribosomopathies." 6 In addition, evidence suggests that the anemia associated with the 5q minus (5qϪ) syndrome (or myelodysplastic syndrome with loss of all or part of chromosome 5q [del(5q) MDS]), a distinct subtype of myelodysplastic syndrome results from somatic heterozygous loss of the ribosomal protein gene RPS14 in hematopoietic stem cells. 7,8 Efforts to understand why ribosomal protein haploinsufficiencies have such a specific and profound effect on erythroid development at the molecular level have focused on the activation and stabilization of p53 in response to ribosomal stress. 9 However, the precise mechanisms governing how p53 stabilization occurs in response to ribosomal protein haploinsufficiency have not been clearly defined. Furthermore, not all bone marrow samples from patients with del(5q) MDS or DBA sh...
Zika virus (ZIKV) is a neurotropic and neurovirulent arbovirus that has severe detrimental impact on the developing human fetal brain. To date, little is known about the factors required for ZIKV infection of human neural cells. We identified ZIKV host genes in human pluripotent stem cell (hPSC)-derived neural progenitors (NPs) using a genome-wide CRISPR-Cas9 knockout screen. Mutations of host factors involved in heparan sulfation, endocytosis, endoplasmic reticulum processing, Golgi function, and interferon activity conferred resistance to infection with the Uganda strain of ZIKV and a more recent North American isolate. Host genes essential for ZIKV replication identified in human NPs also provided a low level of protection against ZIKV in isogenic human astrocytes. Our findings provide insights into host-dependent mechanisms for ZIKV infection in the highly vulnerable human NP cells and identify molecular targets for potential therapeutic intervention.
HIV-1 Vpr is necessary for maximal HIV infection and spread in macrophages. Evolutionary conservation of Vpr suggests an important yet poorly understood role for macrophages in HIV pathogenesis. Vpr counteracts a previously unknown macrophage-specific restriction factor that targets and reduces the expression of HIV Env. Here, we report that the macrophage mannose receptor (MR), is a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway and dramatically reduce MR expression. Silencing MR or deleting mannose residues on Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we also show that disrupting interactions between Env and MR reduces initial infection of macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that hijacks a host mannose-MR response system to facilitate infection while evading MR’s normal role, which is to trap and destroy mannose-expressing pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.