Holocene variations in annual precipitation (Pann) were reconstructed from pollen data from southern Argentinian Patagonia using a transfer function developed based on a weighted-averaging partial least squares (WA-PLS) regression. The pollen–climate calibration model consisted of 112 surface soil samples and 59 pollen types from the main vegetation units, and modern precipitation values obtained from a global climate database. The performance (r2 = 0.517; RMSEP = 126 mm) of the model was comparable or slightly lower than in other comparable pollen–climate models. Fossil pollen data were obtained from a sediment core from Cerro Frias site (50°24'S, 72°42'W) located at the forest-steppe ecotone. Reconstructed Pann values of about 200 mm suggest dry conditions during the Pleistocene–Holocene transition (12,500–10,500 cal yr BP). Pann values were about 300–350 mm from 10,500 to 8000 cal yr BP and increased to 400–500 mm between 8000 and 1000 cal yr BP. An abrupt decrease in Pann at about 1000 cal yr BP was associated with a Nothofagus decline. The reconstructed Pann suggests a weakening and southward shift of the westerlies during the early Holocene and intensification, with no major latitudinal shifts, during the mid-Holocene at high latitudes in southern Patagonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.