The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix, and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N‐terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human fibroblasts [Okayama and Berg (1983) Mol. Cell Biol., 3, 280‐289]. The cDNA encodes a protein of 313 amino acids, preceded by a 21 residue signal peptide. A hydrophobicity plot suggests the presence of a membrane spanning domain close to the C‐terminus. The cDNA hybridizes to a 1.4 kb mRNA from human cells, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis, direct binding studies and cross‐linking experiments show that the transfected mouse LB6 cells specifically bind human uPA, which in turn activates plasminogen. The Mr of the mature human receptor expressed in mouse cells is approximately 55,000, in accordance with the naturally occurring, highly glycosylated human uPAR. The Mr calculated on the basis of the cDNA sequence, approximately 35,000, agrees well with that of the deglycosylated receptor.
Beckwith-Wiedemann syndrome (BWS) is characterized by cancer predisposition, overgrowth and highly variable association of macroglossia, abdominal wall defects, nephrourological anomalies, nevus flammeus, ear malformations, hypoglycemia, hemihyperplasia, and organomegaly. BWS molecular defects, causing alteration of expression or activity of the genes regulated by two imprinting centres (IC) in the 11p15 chromosomal region, are also heterogeneous. In this paper we define (epi)genotype-phenotype correlations in molecularly confirmed BWS patients. The characteristics of 318 BWS patients with proven molecular defect were compared among the main four molecular subclasses: IC2 loss of methylation (IC2-LoM, n = 190), IC1 gain of methylation (IC1-GoM, n = 31), chromosome 11p15 paternal uniparental disomy (UPD, n = 87), and cyclin-dependent kinase inhibitor 1C gene (CDKN1C) variants (n = 10). A characteristic growth pattern was found in each group; neonatal macrosomia was almost constant in IC1-GoM, postnatal overgrowth in IC2-LoM, and hemihyperplasia more common in UPD (Po0.001). Exomphalos was more common in IC2/CDKN1C patients (Po0.001). Renal defects were typical of UPD/IC1 patients, uretheral malformations of IC1-GoM cases (Po0.001). Ear anomalies and nevus flammeus were associated with IC2/CDKN1C genotype (Po0.001). Macroglossia was less common among UPD patients (Po0.001). Wilms' tumor was associated with IC1-GoM or UPD and never observed in IC2-LoM patients (Po0.001). Hepatoblastoma occurred only in UPD cases. Cancer risk was lower in IC2/CDKN1C, intermediate in UPD, and very high in IC1 cases (P = 0.009).In conclusion, (epi)genotype-phenotype correlations define four different phenotypic BWS profiles with some degree of clinical overlap. These observations impact clinical care allowing to move toward (epi) genotype-based follow-up and cancer screening.
Genomic imprinting is an epigenetic phenomenon restricting gene expression in a manner dependent on parent of origin. Imprinted gene products are critical regulators of growth and development, and imprinting disorders are associated with both genetic and epigenetic mutations, including disruption of DNA methylation within the imprinting control regions (ICRs) of these genes. It was recently reported that some patients with imprinting disorders have a more generalised imprinting defect, with hypomethylation at a range of maternally methylated ICRs. We report a cohort of 149 patients with a clinical diagnosis of Beckwith -Wiedemann syndrome (BWS), including 81 with maternal hypomethylation of the KCNQ1OT1 ICR. Methylation analysis of 11 ICRs in these patients showed that hypomethylation affecting multiple imprinted loci was restricted to 17 patients with hypomethylation of the KCNQ1OT1 ICR, and involved only maternally methylated loci. Both partial and complete hypomethylation was demonstrated in these cases, suggesting a possible postzygotic origin of a mosaic imprinting error. Some ICRs, including the PLAGL1 and GNAS/NESPAS ICRs implicated in the aetiology of transient neonatal diabetes and pseudohypoparathyroidism type 1b, respectively, were more frequently affected than others. Although we did not find any evidence for mutation of the candidate gene DNMT3L, these results support the hypotheses that trans-acting factors affect the somatic maintenance of imprinting at multiple maternally
The receptor for urokinase plasminogen activator (uPA) has been previously shown not to internalize its ligand, but rather to focalize its activity at the cell surface, allowing a regulated cell surface plasmin dependent proteolysis. The receptor in fact binds the proenzyme pro‐uPA and allows its very efficient conversion to the active two chains form. Receptor bound active uPA can also interact with its specific type 1 inhibiror (PAI‐1) which is therefore able to inhibit the cell surface plasmin formation. In this paper we show that the uPA‐PAI‐1 complex bound to the uPA receptor is internalized and degraded. U937 cells were incubated at 4 degrees C with labeled uPA‐PAI‐1 (and other ligands), the temperature then raised to 37 degrees C and the fate of the ligand followed for 3 h thereafter. The uPA‐PAI‐1 complex was internalized into the cells (i.e. could not be dissociated by acid treatment) and thereafter degraded (i.e. appeared in the supernatant in a non TCA‐precipitable form). Other ligands (free uPA, ATF and DFP‐treated uPA) were not internalized nor degraded. The degradation of the uPA‐PAI‐1 complex is preceded by internalization and is inhibited by chloroquine, an inhibitor of lysosomal protein degradation. These data suggest the existence of a cellular cycle of uPA. After synthesis pro‐uPA is secreted, bound to the receptor and activated to two chain uPA. On the surface, uPA can activate surface bound plasminogen to produce surface bound plasmin. In the presence of PAI‐1 uPA activity is inhibited and plasmin production interrupted, while the uPA‐PAI‐1 complex is internalized and degraded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.