Leaf senescence is a highly coordinated process which involves programmed cell death (PCD). Early stages of leaf senescence occurring during normal leaf ontogenesis, but not triggered by stress factors, are less well known. In this study, we correlated condensation of chromatin and nuclear DNA (nDNA) fragmentation, two main features of PCD during early senescence in barley leaves, with the appearance of nitric oxide (NO) within leaf tissue. With the help of the alkaline version of the comet assay, together with measurements of nDNA fluorescence intensity, we performed a detailed analysis of the degree of nDNA fragmentation. We localised NO in vivo and in situ within the leaf and photometrically measured its concentration with the NO-specific fluorochrome 4-amino-5-methylamino-2',7'-difluorofluorescein. We found that both nDNA fragmentation and chromatin condensation occurred quite early during barley leaf senescence and always in the same order: first nDNA fragmentation, in leaves of 6-day-old seedlings, and later chromatin condensation, in the apical part of leaves from 10-day-old seedlings. PCD did not start simultaneously even in neighbouring cells and probably did not proceed at the same rate. NO was localised in vivo and in situ within the cytoplasm, mainly in mitochondria, in leaves at the same stage as those in which chromatin condensation was observed. Localisation of NO in vascular tissue and in a large number of mesophyll cells during the senescence process might imply its transport to other parts of the leaf and its involvement in signalling between cells. The fact that the highest concentration of NO was found in the cytoplasm of mesophyll cells in the earliest stage of senescence and lower concentrations were found during later stages might suggest that NO plays an inductive role in PCD.
In this study we report on morphological and histochemical indicators of maize and barley leaf senescence. We determined how the traits such as distribution of stomata and hairs, presence of epicuticular wax, staining of tissues with toluidine blue, change with leaf age and within the leaf blade. We identified regions of young, non-mature leaves as exhibiting juvenile phase, regions with features typical for mature and fully differentiated leaves -as an adult phase and regions with traits of age damage as a senescing phase. Ultrastructural analysis of these regions of leaves gives a clear picture of the time development of the senescence process. Appearance of morphological and histological indicators of senescence in certain regions of leaf is correlated with ultrastructural changes of mesophyll cells of the same regions. We have thus found a relatively simple method of estimating the stage of senescence both in maize and barley.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.