In this study, we explored the local cytokine/chemokine profiles in patients with active pulmonary or pleural tuberculosis (TB) using multiplex protein analysis of bronchoalveolar lavage and pleural fluid samples. Despite increased pro-inflammation compared to the uninfected controls; there was no up-regulation of IFN-γ or the T cell chemoattractant CCL5 in the lung of patients with pulmonary TB. Instead, elevated levels of IL-4 and CCL4 were associated with high mycobacteria-specific IgG titres as well as SOCS3 (suppressors of cytokine signaling) mRNA and progression of moderate-to-severe disease. Contrary, IL-4, CCL4 and SOCS3 remained low in patients with extrapulmonary pleural TB, while IFN-γ, CCL5 and SOCS1 were up-regulated. Both SOCS molecules were induced in human macrophages infected with Mycobacterium tuberculosis in vitro. The Th2 immune response signature found in patients with progressive pulmonary TB could result from inappropriate cytokine/chemokine responses and excessive SOCS3 expression that may represent potential targets for clinical TB management.
Scope: Several methods are used worldwide for antibiotic susceptibility testing (AST) for the Mycobacterium tuberculosis complex (MTBC). The variability in the results obtained with these methods hampers setting epidemiological cut-off (ECOFF) values and clinical breakpoints according to EUCAST guidelines. Methods for susceptibility testing and determination of the minimal inhibitory concentrations (MICs) need to be standardized for MTBC isolates for old and new agents. Our objective was to establish a standardized reference method for MIC determination for MTBC. Methods: The EUCAST antimycobacterial susceptibility testing subcommittee (AMST) compared protocols of MIC determination with regard to medium, inoculum preparation, antituberculous agent preparation, incubation, reading of the results and interpretation. Recommendations: The EUCAST reference method of MIC determination for MTBC is the broth microdilution method in Middlebrook 7H9-10% OADC medium. The final inoculum is a 10 5 CFU/mL suspension, obtained from a 10 À2 dilution of a 0.5 McFarland suspension prepared after vortexing bacterial colonies with glass beads before suspending them in sterile water. The culture is maintained in a U-shaped 96well polystyrene microtitre sterile plate with a lid incubated at 36 ± 1 C. Reading is done using an inverted mirror as soon as the 1:100 diluted control (i.e. 10 3 CFU/mL suspension) shows visual growth. The MIC, expressed in mg/L, is the lowest concentration that inhibits visual growth. Mycobacterium tuberculosis H37Rv ATCC 27294 is used as the reference strain and its targeted MIC values are within the range 0.03e0.12 for isoniazid, 0.12e0.5 for levofloxacin and 0.25e1 mg/L for amikacin. Conclusions: The EUCAST reference method for MTBC was endorsed by EUCAST after public consultation and will from now on be used to define EUCAST ECOFFs and clinical breakpoints. This reference method is not primarily intended to be used under routine conditions and the AST methods will need to be
Objectives
To develop a robust phenotypic antimicrobial susceptibility testing (AST) method with a correctly set breakpoint for pretomanid (Pa), the most recently approved anti-tuberculosis drug.
Methods
The Becton Dickinson Mycobacterial Growth Indicator Tube™ (MGIT) system was used at six laboratories to determine the MICs of a phylogenetically diverse collection of 356 Mycobacterium tuberculosis complex (MTBC) strains to establish the epidemiological cut-off value for pretomanid. MICs were correlated with WGS data to study the genetic basis of differences in the susceptibility to pretomanid.
Results
We observed ancient differences in the susceptibility to pretomanid among various members of MTBC. Most notably, lineage 1 of M. tuberculosis, which is estimated to account for 28% of tuberculosis cases globally, was less susceptible than lineages 2, 3, 4 and 7 of M. tuberculosis, resulting in a 99th percentile of 2 mg/L for lineage 1 compared with 0.5 mg/L for the remaining M. tuberculosis lineages. Moreover, we observed that higher MICs (≥8 mg/L), which probably confer resistance, had recently evolved independently in six different M. tuberculosis strains. Unlike the aforementioned ancient differences in susceptibility, these recent differences were likely caused by mutations in the known pretomanid resistance genes.
Conclusions
In light of these findings, the provisional critical concentration of 1 mg/L for MGIT set by EMA must be re-evaluated. More broadly, these findings underline the importance of considering the global diversity of MTBC during clinical development of drugs and when defining breakpoints for AST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.