Our modern cities are resource sinks designed on the current linear economic model which recovers very little of the original input. As the current model is not sustainable, a viable solution is to recover and reuse parts of the input. In this context, resource recovery using nature-based solutions (NBS) is gaining popularity worldwide. In this specific review, we focus on NBS as technologies that bring nature into cities and those that are derived from nature, using (micro)organisms as principal agents, provided they enable resource recovery. The findings presented in this work are based on an extensive literature review, as well as on original results of recent innovation projects across Europe. The case studies were collected by participants of the COST Action Circular City, which includes a portfolio of more than 92 projects. The present review article focuses on urban wastewater, industrial wastewater, municipal solid waste and gaseous effluents, the recoverable products (e.g., nutrients, nanoparticles, energy), as well as the implications of source-separation and circularity by design. The analysis also includes assessment of the maturity of different technologies (technology readiness level) and the barriers that need to be overcome to accelerate the transition to resilient, self-sustainable cities of the future.
The present food system is characterized by a linear flow of resources from rural areas into cities, where most food is consumed and essential nutrients discharged as wastewater. Limited water and phosphorus resources and large carbon footprints of chemical fertilizers drive increased recovery of water and nutrients for reuse in agriculture. Alongside end-of-pipe technologies at conventional wastewater treatment plants, nature-based solutions provide a robust and low-energy alternative solution. This paper assesses the potential of treatment processes using NBS to close water and nutrient cycles in the urban food system. A Substance Flow Analysis approach is used to quantify the recoverable urban nutrient (nitrogen, phosphorus, potassium) budget contained in household wastewater and biodegradable kitchen waste, using the city of Vienna, Austria, as an example. The developed model reflects the metabolization of water and nutrients by treatment wetlands and biogas digesters into fertigation water and fertilizer. It differentiates between specific crop nutrient requirements and yields, and by greenhouse and outdoor farming conditions in a temperate climate. Results indicate that, using NBS, the wastewater and kitchen waste from 77,250 persons could fully cover the nitrogen and phosphorus fertilizer demand of the entire vegetable production in Vienna, which currently supplies one-third of Vienna’s vegetable consumption. Additional people connected to the system can supply significant excess nutrients to produce other crops within and beyond the city. The model can inform selection and design of NBS for nutrient recovery and reuse, and support integrated planning regarding use of secondary nutrient sources and optimization of secondary nutrient utilization.
Cities are producers of high quantities of secondary liquid and solid streams that are still poorly utilized within urban systems. In order to tackle this issue, there has been an ever-growing push for more efficient resource management and waste prevention in urban areas, following the concept of a circular economy. This review paper provides a characterization of urban solid and liquid resource flows (including water, nutrients, metals, potential energy, and organics), which pass through selected nature-based solutions (NBS) and supporting units (SU), expanding on that characterization through the study of existing cases. In particular, this paper presents the currently implemented NBS units for resource recovery, the applicable solid and liquid urban waste streams and the SU dedicated to increasing the quality and minimizing hazards of specific streams at the source level (e.g., concentrated fertilizers, disinfected recovered products). The recovery efficiency of systems, where NBS and SU are combined, operated at a micro- or meso-scale and applied at technology readiness levels higher than 5, is reviewed. The importance of collection and transport infrastructure, treatment and recovery technology, and (urban) agricultural or urban green reuse on the quantity and quality of input and output materials are discussed, also regarding the current main circularity and application challenges.
In particular relation to the UN 2030 Agenda for sustainable development goal No. 12 (“responsible production and consumption”), the implementation of a circular economy into the building industry has special potentials. More circular flows of material and information can simultaneously decrease resource extraction, fossil energy consumption and environmental pollution, while allowing new business models. However, this chance still remains largely neglected by decision makers. In order to transform this situation, it is necessary to understand and re-weave the entire value chain – requiring new collaborations between various stakeholder groups. In a three-year project that was dedicated to setting up a strategy for the implementation of circularity in the building sector within a region in Germany, stakeholders were involved to work towards circular value creation beyond waste management. The project proceeded in three dimensions: 1) Action-oriented networking and strategy making, 2) Conceptualizations and implementation steps for a pilot location that makes high-value products from building waste, 3) Identification of action items and project initiations. Based on a stakeholder analysis, this paper reflects upon the entire process, with a focus on qualitative information flows. The paper concludes with a critical view regarding the stakeholder network method of the project and its efficiency in implementing the circular economy on a regional scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.