This contribution provides a comprehensive mechanistic picture of the gold nanoparticle synthesis by citrate reduction of HAuCl4, known as Turkevich method, by addressing five key questions. The synthesis leads to monodisperse final particles as a result of a seed-mediated growth mechanism. In the initial phase of the synthesis, seed particles are formed onto which the residual gold is distributed during the course of reaction. It is shown that this mechanism is a fortunate coincidence created by a favorable interplay of several chemical and physicochemical processes which initiate but also terminate the formation of seed particles and prevent the formation of further particles at later stages of reaction. Since no further particles are formed after seed particle formation, the number of seeds defines the final total particle number and therefore the final size. The gained understanding allows illustrating the influence of reaction conditions on the growth process and thus the final size distribution.
The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation.
This paper studies the UV-vis absorbance of colloidal gold nanoparticles at 400 nm and validates it as a method to determine Au(0) concentrations in colloidal gold solutions. The method is shown to be valid with restrictions depending on the investigated system. The uncertainty of the determined Au(0) concentration can be up to 30%. This deviation is the result of the combined influence of parameters such as particle size, surface modification, or oxidation state. However, quantifying the influence of these parameters enables a much more precise Au(0) determination for specific systems. As an example, the reduction process of the well-known Turkevich method was monitored and the Au(0) concentration was determined with a deviation of less than 5%. Hence, a simple, fast, easy, and cheap in situ method for Au(0) determination is demonstrated that has in the presence of other gold species such as Au(III) an unprecedented accuracy.
Metal nanoparticles have attracted much attention due to their unique properties. Size control provides an effective key to an accurate adjustment of colloidal properties. The common approach to size control is testing different sets of parameters via trial and error. The actual particle growth mechanisms, and in particular the influences of synthesis parameters on the growth process, remain a black box. As a result, precise size control is rarely achieved for most metal nanoparticles. This contribution presents an approach to size control that is based on mechanistic knowledge. It is exemplified for a common silver nanoparticle synthesis, namely, the reduction of AgClO 4 with NaBH 4 . Conducting this approach allowed a well-directed modification of this synthesis that enables, for the first time, the size-controlled production of silver nanoparticles 4−8 nm in radius without addition of any stabilization agent.
This contribution investigates the growth mechanism of the Turkevich method. The experimental results provide the important missing piece of the mechanistic puzzle which enables the actual control of particle growth in the common Turkevich method. Applying the gained knowledge, the boundary conditions for a successful Turkevich synthesis are deduced. Moreover, the conditions under which the Turkevich method is highly reproducible are derived. Following these conditions, the Turkevich synthesis is modified to reveal small monodisperse particles with an unprecedented reproducibility of ±0.1 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.