Structure-based design (SBD) can be used for the design and/or optimization of new inhibitors for a biological target. Whereas de novo SBD is rarely used, most reports on SBD are dealing with the optimization of an initial hit. Dynamic combinatorial chemistry (DCC) has emerged as a powerful strategy to identify bioactive ligands given that it enables the target to direct the synthesis of its strongest binder. We have designed a library of potential inhibitors (acylhydrazones) generated from five aldehydes and five hydrazides and used DCC to identify the best binder(s). After addition of the aspartic protease endothiapepsin, we characterized the protein-bound library member(s) by saturation-transfer difference NMR spectroscopy. Cocrystallization experiments validated the predicted binding mode of the two most potent inhibitors, thus demonstrating that the combination of de novo SBD and DCC constitutes an efficient starting point for hit identification and optimization.
Nerve growth factor (NGF) holds a pivotal role in brain development and maintenance, been also involved in the pathophysiology of neurodegenerative diseases. Here, we provide evidence that a novel C17-spiroepoxy steroid derivative, BNN27, specifically interacts with and activates the TrkA receptor of NGF, inducing phosphorylation of TrkA tyrosine residues and down-stream neuronal survival-related kinase signaling. Additionally, BNN27 potentiates the efficacy of low levels of NGF, by facilitating its binding to the TrkA receptors and differentially inducing fast return of internalized TrkA receptors into neuronal cell membranes. Furthermore, BNN27 synergizes with NGF in promoting axonal outgrowth, effectively rescues from apoptosis NGF-dependent and TrkA positive sympathetic and sensory neurons, in vitro, ex vivo and in vivo in NGF null mice. Interestingly, BNN27 does not possess the hyperalgesic properties of NGF. BNN27 represents a lead molecule for the development of neuroprotective TrkA receptor agonists, with potential therapeutic applications in neurodegenerative diseases and in brain trauma.
Losartan is the first recently approved drug against hypertension disease that competes with the biological action of angiotensin II (AII) at the AT1 receptor. Its design was based on the mimicry of the C-terminal segment of AII. Due to the biological significance of Losartan, its structure elucidation and conformational properties are reported as determined by NMR spectroscopy and computational analysis. In addition, molecular modeling of the peptide Sarmesin [Sar1Tyr(OMe)4AII], a competitive antagonist of AII, was also developed based on NMR and computational analysis data. Sarmesin's C-terminal was used as a template for superimposition with specific molecular features of interest in the structure of Losartan such as the conformation of biphenyltetrazole, the n-butyl chain, and the orientation of hydroxymethylimidazole relative to the biphenyl template. The major conclusions derived from this study are the following: (a) Sarmesin, like the AII superagonist [Sar1]AII, adopts a conformation which keeps in close proximity the key amino acids Sar1 (or Arg2)-Tyr(OMe)4-His6-Phe8. (b) Losartan favors a low-energy conformation in which imidazole and tetrazole rings are placed in the opposite site relative to the spacer phenyl ring plane; the hydroxymethyl group is placed away from the spacer phenyl ring, the alkyl chain is oriented above the spacer phenyl ring, and the two phenyl rings deviate approximately 60 degrees from being coplanar. (c) Overlay of the C-terminal region of Sarmesin with Losartan using equivalent groups revealed an excellent match. (d) Interestingly, the matching between enantiomeric structures of Losartan was not equivalent, proposing that the chirality of this molecule is significant in order to exert its biological activity. These findings open a new avenue for synthetic chemists to design and synthesize peptidomimetic drugs based on the C-terminal segment of the proposed model of Sarmesin. The new candidate drug molecules are not restricted to structurally resemble Losartan as the design is hitherto focused.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.