Background
Anal cancer is a rare cancer with rising incidence. Despite the relatively good outcomes conferred by state-of-the-art chemoradiotherapy, further improving disease control and reducing toxicity has proven challenging. Developing and validating prognostic models using routinely collected data may provide new insights for treatment development and selection. However, due to the rarity of the cancer, it can be difficult to obtain sufficient data, especially from single centres, to develop and validate robust models. Moreover, multi-centre model development is hampered by ethical barriers and data protection regulations that often limit accessibility to patient data. Distributed (or federated) learning allows models to be developed using data from multiple centres without any individual-level patient data leaving the originating centre, therefore preserving patient data privacy. This work builds on the proof-of-concept three-centre atomCAT1 study and describes the protocol for the multi-centre atomCAT2 study, which aims to develop and validate robust prognostic models for three clinically important outcomes in anal cancer following chemoradiotherapy.
Methods
This is a retrospective multi-centre cohort study, investigating overall survival, locoregional control and freedom from distant metastasis after primary chemoradiotherapy for anal squamous cell carcinoma. Patient data will be extracted and organised at each participating radiotherapy centre (n = 18). Candidate prognostic factors have been identified through literature review and expert opinion. Summary statistics will be calculated and exchanged between centres prior to modelling. The primary analysis will involve developing and validating Cox proportional hazards models across centres for each outcome through distributed learning. Outcomes at specific timepoints of interest and factor effect estimates will be reported, allowing for outcome prediction for future patients.
Discussion
The atomCAT2 study will analyse one of the largest available cross-institutional cohorts of patients with anal cancer treated with chemoradiotherapy. The analysis aims to provide information on current international clinical practice outcomes and may aid the personalisation and design of future anal cancer clinical trials through contributing to a better understanding of patient risk stratification.
Given the challenge that healthcare related data are being obtained from various sources and in divergent formats there is an emerging need for providing improved and automated techniques and technologies that perform qualification and standardization of these data. The approach presented in this paper introduces a novel mechanism for the cleaning, qualification, and standardization of the collected primary and secondary data types. The latter is realized through the design and implementation of three (3) integrated subcomponents, the Data Cleaner, the Data Qualifier, and the Data Harmonizer that are further evaluated by performing data cleaning, qualification, and harmonization on top of data related to Pancreatic Cancer to further develop enhanced personalized risk assessment and recommendations to individuals.
In the era of evidence-based medicine, several clinical guidelines were developed, supporting cancer management from diagnosis to treatment and aiming to optimize patient care and hospital resources. Nevertheless, individual patient characteristics and organizational factors may lead to deviations from these standard recommendations during clinical practice. In this context, process mining in healthcare constitutes a valid tool to evaluate conformance of real treatment pathways, extracted from hospital data warehouses as event log, to standard clinical guidelines, translated into computer-interpretable formats. In this study we translate the European Society of Medical Oncology guidelines for rectal cancer treatment into a computer-interpretable format using Pseudo-Workflow formalism (PWF), a language already employed in pMineR software library for Process Mining in Healthcare. We investigate the adherence of a real-world cohort of rectal cancer patients treated at Fondazione Policlinico Universitario A. Gemelli IRCCS, data associated with cancer diagnosis and treatment are extracted from hospital databases in 453 patients diagnosed with rectal cancer. PWF enables the easy implementation of guidelines in a computer-interpretable format and visualizations that can improve understandability and interpretability of physicians. Results of the conformance checking analysis on our cohort identify a subgroup of patients receiving a long course treatment that deviates from guidelines due to a moderate increase in radiotherapy dose and an addition of oxaliplatin during chemotherapy treatment. This study demonstrates the importance of PWF to evaluate clinical guidelines adherence and to identify reasons of deviations during a treatment process in a real-world and multidisciplinary setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.