In the absence of extracellular Ca2+, extensive Ca2+ release from the platelet intracellular stores [monitored as an increase of intracellular Ca2+ concentration ([Ca2+]i)] is produced by the combined action of the endomembrane Ca(2+)-ATPase inhibitor thapsigargin and 2 nM ionomycin. The titration of Ca2+ unloading with thapsigargin (plus ionomycin) shows that a substantial fraction of the store-associated Ca2+ is released by 8-10 nM thapsigargin, but that 100-200 nM thapsigargin is required for the complete release. The store depletion obtained in similar conditions with a different endomembrane Ca(2+)-ATPase inhibitor, 2,5-di-(tert-butyl)-1,4-benzohydroquinone (TBHQ), is always incomplete. It is completed by thrombin or by 10 nM thapsigargin. We conclude that two different types of Ca2+ pumps exist in platelets, one sensitive to TBHQ and to high thapsigargin, the other insensitive to TBHQ and sensitive to low thapsigargin. They are distributed separately in discrete subpopulations of the agonist-sensitive stores. The influx of external Ca2+ is maximal when both types of stores are Ca(2+)-depleted, either by high thapsigargin or by the combined action of low thapsigargin and TBHQ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.