A numerical model was developed to simulate the effects of tissue optical properties, objective numerical aperture ͑N.A.͒, and instrument performance on two-photon-excited fluorescence imaging of turbid samples. Model data are compared with measurements of fluorescent microspheres in a tissuelike scattering phantom. Our results show that the measured two-photon-excited signal decays exponentially with increasing focal depth. The overall decay constant is a function of absorption and scattering parameters at both excitation and emission wavelengths. The generation of two-photon fluorescence is shown to be independent of the scattering anisotropy, g, except for g Ͼ 0.95. The N.A. for which the maximum signal is collected varies with depth, although this effect is not seen until the focal plane is greater than two scattering mean free paths into the sample. Overall, measurements and model results indicate that resolution in two-photon microscopy is dependent solely on the ability to deliver sufficient ballistic photon density to the focal volume. As a result we show that lateral resolution in two-photon microscopy is largely unaffected by tissue optical properties in the range typically encountered in soft tissues, although the maximum imaging depth is strongly dependent on absorption and scattering coefficients, scattering anisotropy, and objective N.A..
Two-photon excitation laser scanning microscopy (TPM) was used to image human, porcine, and rabbit nasal septal cartilage. TPM provides optical sections of thick tissue specimens in situ without the use of exogenous dyes or need for tissue fixation. The cartilage tissue was imaged using near-infrared light generated by a mode-locked titanium/sapphire laser that was raster-scanned and coupled to an inverted microscope. Absorption of two photons by endogenous molecules and subsequent fluorescence was filtered to specific spectral bandwidths and detected with photomultiplier tubes. Two-photon stimulated fluorescence was detected with photomultiplier tubes optimized to specific spectral bandwidths. Signal intensity corresponds to the concentration of fluorophores, principally NADH, NADPH, and flavoproteins hence providing a means of redox imaging the cellular metabolic state. Specimens were scanned from the surface to a depth of about 150 mm. Image size was 50 3 50 mm with a diffraction limited pixel size of 0.4 mm. Cell membranes, nuclei, and matrix structures were identified in human, pig, and rabbit tissues. TPM provides a means to study three dimensional chondrocyte structure and matrix organization in situ at substantial depths, and permits longitudinal examination of cultured tissue explants without the need for exogenous dyes, tissue preparation, or fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.