Heterogeneity of the hydraulic properties is one of the main causes of the seemingly random distribution of solute concentration observed in contaminated aquifers, with macrodispersivity providing a global measure of spreading. Earlier studies on transport of solutes in heterogeneous formations, either theoretical or numerical, expressed dispersivity as a function of the geostatistical properties of the hydraulic conductivity K. In most cases, K follows a second‐order statistical characterization, which may not be adequate when heterogeneity is high. In this work, we adopt the Multi‐Indicator Model–Self Consistent Approach (MIMSCA) to compute the longitudinal and transverse macrodispersivity. This methodology enables to model the K field by using geological inclusions of different shapes and orientation (defined here as the microstructure), while replicating the heterogeneous macrostructure obtained by the second‐order statistics. The above scheme attempts to reproduce the effect on macrodispersion of different distribution and orientation of local facies, and for instance it may represent the orientation and spatial features of the layers that are often observed in aquifers. The relevant impact of the microstructure on effective conductivity, longitudinal and transverse macrodispersivities is analyzed and discussed, for both binary and lognormally distributed K fields.
Natural attenuation and in situ oxidation are commonly considered as low‐cost alternatives to ex situ remediation. The efficiency of such remediation techniques is hindered by difficulties in obtaining good dilution and mixing of the contaminant, in particular if the plume deformation is physically constrained by an array of wells, which serves as a containment system. In that case, dilution may be enhanced by inducing an engineered sequence of injections and extractions from such pumping system, which also works as a hydraulic barrier. This way, the aquifer acts as a natural mixer, in a manner similar to the industrialized engineered mixers. Improving the efficiency of hydrogeological mixers is a challenging task, owing to the need to use a 3‐D setup while relieving the computational burden. Analytical solutions, though approximated, are a suitable and efficient tool to seek the optimum solution among all possible flow configurations. Here we develop a novel physically based model to demonstrate how the combined spatiotemporal fluctuations of the water fluxes control solute trajectories and residence time distributions and therefore, the effectiveness of contaminant plume dilution and mixing. Our results show how external forcing configurations are capable of inducing distinct time‐varying groundwater flow patterns which will yield different solute dilution rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.