Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.
An extremely promising methodology able to obtain feedbacks from cell cultures is represented by the direct integration within culture substrates of specific sensitive elements capable to provide information related to cell adhesion, migration, differentiation and growth. At present, the most common materials used in the implementation of sensors monitoring 2D cell culture are noble metals. However, printed electronics allow instead an innovative approach, from both sensor realization technique and utilization of sensitive materials. This project aims to develop and test 2D ink-jet printed sensors, focusing on biocompatible substrates and conductive inks. Both biocompatibility and printability of two different sensor designs were evaluated, followed by electronic measurements that estimate fibroblast adhesion. Preliminary findings show a good biocompatibility of the Kapton® substrate coupled with PEDOT:PSS ink. This solution allowed us to correlate cell adhesion with an increase of impedance module, in agreement with the optical observation. On-going works rely on the evaluation of different materials used for both substrates and inks, addressing the possibility to monitor cardiomyocyte activity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.