ObjectivesThe brain’s cholinergic system occupies a central role in normal cognition and age-related cognitive decline, including Alzheimer’s disease (AD). This study sought to investigate the role of antioxidant defense and cholinergic systems on rutin-induced antiamnesia in mice.MethodsRutin (1, 5, or 50 mg/kg, p.o.) or vehicle (10 ml/kg, p.o.) was administered for three consecutive days. One hour post-treatment on day 3, scopolamine (3 mg/kg, i.p) was given, 5 min post-scopolamine injection, open field, Y-maze, or Morris water maze (MWM) (five days consecutive training sessions) tasks was carried out. The mice were sacrificed on day 7 to assays for biomarkers of oxidative stress and cholinergic system.ResultsScopolamine significantly reduced spontaneous alternation behavior in Y-maze and prolonged escape latency in MWM tasks when compared to vehicle-treated control indicative of working memory and spatial learning deficits. However, the pretreatment of mice with rutin (1, 5, or 50 mg/kg) prevented scopolamine-induced working memory and spatial learning impairments without affecting spontaneous locomotor activity. Scopolamine-induced nitrosative/oxidative stress and increased acetylcholinesterase activity in the prefrontal cortex and hippocampus were significantly attenuated by the pretreatment of mice with rutin.Conclusionsrutin restored cognitive function in scopolamine-induced amnesia through enhancement of antioxidant defense and cholinergic systems.
Objectives The brain’s cholinergic system occupies a central role in normal cognition and age-related cognitive decline, including Alzheimer’s disease (AD). This study sought to investigate the role of antioxidant defense and cholinergic systems on rutin-induced antiamnesia in mice. Methods Rutin (1, 5, or 50 mg/kg, p.o.) or vehicle (10 ml/kg, p.o.) was administered for three consecutive days. One hour post-treatment on day 3, scopolamine (3 mg/kg, i.p) was given, 5 min post-scopolamine injection, open field, Y-maze, or Morris water maze (MWM) (five days consecutive training sessions) tasks was carried out. The mice were sacrificed on day 7 to assays for biomarkers of oxidative stress and cholinergic system. Results Scopolamine significantly reduced spontaneous alternation behavior in Y-maze and prolonged escape latency in MWM tasks when compared to vehicle-treated control indicative of working memory and spatial learning deficits. However, the pretreatment of mice with rutin (1, 5, or 50 mg/kg) prevented scopolamine-induced working memory and spatial learning impairments without affecting spontaneous locomotor activity. Scopolamine-induced nitrosative/oxidative stress and increased acetylcholinesterase activity in the prefrontal cortex and hippocampus were significantly attenuated by the pretreatment of mice with rutin. Conclusions rutin restored cognitive function in scopolamine-induced amnesia through enhancement of antioxidant defense and cholinergic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.