Discontinuities mainly control the mechanical behavior of rock mass and cause a significant reduction in the rock mass strength. Joint persistency and joint infill conditions are considered the most significant joint parameters that control the mechanical response of rock mass. In this study, numerical and statistical analyses were performed on pre-cracked specimens with two flaws to investigate the effect of joint persistence parameters on shear strength. In addition, an extensive study was conducted to explore the effect of infilled mineral strength, infill thickness, and infill wall roughness on shear strength. The Lattice-Spring-Based Synthetic Rock Mass (LS-SRM) approach was utilized to perform the numerical models. The results showed that the tensile crack propagation is limited at higher normal stresses as tensile damage is largely suppressed. The increases in rock bridge angle slightly increased the shear strength and caused a change in the failure mechanisms of the rock bridge from tensile to shearing. The results of the models with infilled minerals revealed that infilled minerals mainly controlled the shear strength of specimens when the infill thickness was 4.0 mm or greater. The infill wall roughness had no apparent effect on the shear strength. In contrast, it governed the failure mechanisms; cracks initiated at the asperity of the rough filling wall and propagated through the hosted rock mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.