SummaryVascular endothelial dysfunction occurs during the human aging process, and it is considered as a crucial event in the development of many vasculopathies. We investigated the underlying mechanisms of this process, particularly those related with oxidative stress and inflammation, in the vasculature of subjects aged 18-91 years without cardiovascular disease or risk factors. In isolated mesenteric microvessels from these subjects, an age-dependent impairment of the endotheliumdependent relaxations to bradykinin was observed. Similar results were observed by plethysmography in the forearm blood flow in response to acetylcholine. In microvessels from subjects aged less than 60 years, most of the bradykinin-induced relaxation was due to nitric oxide release while the rest was sensitive to cyclooxygenase (COX) blockade. In microvessels from subjects older than 60 years, this COX-derived vasodilatation was lost but a COX-derived vasoconstriction occurred. Evidence for age-related vascular oxidant and inflammatory environment was observed, which could be related to the development of endothelial dysfunction. Indeed, aged microvessels showed superoxide anions (O 2 ) ) and peroxynitrite (ONOO ) ) formation, enhancement of NADPH oxidase and inducible NO synthase expression. Pharmacological interference of COX, thromboxane A 2 ⁄ prostaglandin H 2 receptor, O 2, inducible NO synthase, and NADPH oxidase improved the age-related endothelial dysfunction. In situ vascular nuclear factor-jB activation was enhanced with age, which correlated with endothelial dysfunction. We conclude that the age-dependent endothelial dysfunction in human vessels is due to the combined effect of oxidative stress and vascular wall inflammation.
1 Diabetes mellitus leads to a high incidence of several so-called complications, sharing similar pathophysiological features in several territories. Previous reports points at early nonenzymatic glycosylation products (Amadori adducts) as mediators of diabetic vascular complications. In the present study, we analysed a possible role for Amadori adducts as stimulators of proinflammatory pathways in human peritoneal mesothelial cells (HPMCs). 2 Cultured HPMCs isolated from 13 different patients (mean age 38.7716 years) were exposed to different Amadori adducts, that is, highly glycated haemoglobin (10 nM) and glycated bovine serum albumin (0.25 mg ml À1 ), as well as to their respective low glycosylation controls. Amadori adducts, but not their respective controls, elicited a marked increase of NF-kB activation, as determined by electromobility shift assays and transient transfection experiments. 3 Additionally, Amadori adducts significantly increased the production of NF-kB-related proinflammatory molecules, including cytokines, such as TNF-a, IL-1b or IL-6, and enzymes, such as cyclooxygenase-2 and inducible nitric oxide (NO) synthase, this latter leading to the release of NO by HPMCs. 4 The effects of Amadori adducts were mediated by different reactive oxygen and nitrosative species (e.g. superoxide anions, hydroxyl radicals, and peroxynitrite), as they were blunted by coincubation with the appropriate scavengers. Furthermore, NO generated upon exposure to Amadori adducts further stimulated NF-kB activation, either directly or after combination with superoxide anions to form peroxynitrite. 5 We conclude that Amadori adducts can favour peritoneal inflammation by exacerbating changes in NO synthesis pathway and triggering NF-kB-related proinflammatory signals in human mesothelial cells.
The number of older patients admitted to peritoneal dialysis (PD) programmes is growing. At the same time, there is increasing data about the role of mesothelial cells in determining the functional alteration of the peritoneum during PD. However, little is known about the functional changes accompanying the ageing process in mesothelial cells. We aimed to evaluate whether the aging process is accompanied by changes in some functional characteristic of the human peritoneal mesothelial cells (HPMC), which could account for the poor prognosis observed in old patients with PD. HPMCs were isolated from patients undergoing a nonurgent, nonseptic abdominal surgical procedure, without renal, vascular or inflammatory disease. Cytokine levels (by enzyme-linked immunosorbent assay (ELISA)), nitrates+nitrites, and cyclooxygenase (COX) activity (by a chemiluminescence assay), cytokines, COX, nitric oxide synthase (NOS), and nuclear factor (NF)-kappaB1, two messenger ribonucleic acid (mRNA) gene expressions (by reverse transcriptase (RT)-Multiplex PCR), COX, and NOS promoter gene activities, and NF-kappaB-dependent transcription (by transient transfection assays) were determined. Our data show a significant increase in cytokines, COX, and NOS activities, and mRNA expression of cytokines, COX-2, inducible nitric oxide synthase (iNOS) and precursors of NF-kappaB in HPMCs from old people. This was also the case for COX-2 and iNOS promoter gene activities and NF-kappaB-dependent transcription. There was a positive correlation between the age of the donor's cell and the proinflammatory profile of the HPMCs. Such age-dependent increase (around two-three times) is partially abolished by different antioxidant or free-radical scavengers. Thus, aging is accompanied by the presence of an inflammatory state in HPMCs, which involves the participation of different reactive oxygen species.
Objective: To describe the lung pathological changes in influenza A (H1N1) viral pneumonia. We studied morphological changes, nitro-oxidative stress and the presence of viral proteins in lung tissue. Methods and patients: Light microscopy was used to examine lung tissue from 6 fatal cases of pandemic influenza A (H1N1) viral pneumonia. Fluorescence for oxidized dihydroethydium, nitrotyrosine, inducible NO synthase (NOS2) and human influenza A nucleoprotein (NP) (for analysis under confocal microscopy) was also studied in lung tissue specimens. Results: Age ranged from 15 to 50 years. Three patients were women, and 5 had preexisting medical conditions. Diffuse alveolar damage (DAD) was present in 5 cases (as evidenced by hyaline membrane formation, alveolo-capillary wall thickening and PMN infiltrates), and interstitial fibrosis in one case. In the fluorescence studies there were signs of oxygen radical generation, increased NOS2 protein and protein nitration in lung tissue samples, regardless of the duration of ICU admission. Viral NP was found in lung tissue samples from three patients. Type I pneumocytes and macrophages harbored viral NP, as evidenced by confocal immunofluorescence microscopy. Resultados histopatológicos pulmonares en la gripe A (H1N1) pandémica letalResumen Objetivo: Describir la histopatología pulmonar de pacientes que fallecieron con neumonía por virus de la influenza A (H1N1), el tipo celular infectado por el virus y la presencia de stress oxidativo y nitrosativo. Métodos: Hemos examinado tejido pulmonar de 6 pacientes fallecidos en la UCI con el diagnós-tico de infección por el virus influenza A (H1N1) (15---50 años de edad) mediante (i) microscopía óptica, (ii) microscopia confocal con tinciones específicas para diferentes tipos celulares (aquoporina 5, factor Von Willebrand, proteína D del surfactante), (iii) inmunofluorescencia (IF) para sonda de dihidroetidio oxidado, óxido nítrico sintasa inducible (NOS2), anti-3-nitrotirosina y nucleoproteína (NP) del virus de la influenza A (H1N1). Resultados: (1) En 5 casos se encontró daño alveolar difuso (DAD), evidenciado mediante la observación de membranas hialinas, engrosamiento de la pared alveolo-capilar e infiltración de PMN, asociado con hemorragia intensa en un paciente. Un caso presentó fibrosis intersticial.(2) Se demostró en todos los casos aumento de la inmuno-reactividad para DHE oxidado, NOS2 y 3-nitrotirosina independientemente de la duración de la estancia en la UCI. (3) Se encontró NP viral en tres pacientes. (4) El virus se localiza en los neumocitos tipo I y en macrófagos alveolares. Conclusiones: El tejido pulmonar de pacientes fallecidos con neumonía por virus de la influenza A (H1N1) evidencia hallazgos histológicos compatibles con DAD. El estrés nitro-oxidativo prolongado está presente a pesar del tratamiento antiviral. Las proteínas virales pueden permanecer en el tejido pulmonar durante períodos prolongados de tiempo, albergándose en los macrófagos y neumocitos tipo I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.