Recent feature selection scores using pairwise constraints (must-link and cannot-link) have shown better performances than the unsupervised methods and comparable to the supervised ones. However, these scores use only the pairwise constraints and ignore the available information brought by the unlabeled data. Moreover, these constraint scores strongly depend on the given must-link and cannot-link subsets built by the user. In this paper, we address these problems and propose a new semi-supervised constraint score that uses both pairwise constraints and local properties of the unlabeled data. Experimental results show that this new score is less sensitive to the given constraints than the previous scores while providing similar performances.
These last few years, several supervised scores have been proposed in the literature to select histograms. Applied to color texture classification problems, these scores have improved the accuracy by selecting the most discriminant histograms among a set of available ones computed from a color image. In this paper, two new scores are proposed to select histograms: The adapted Variance score and the adapted Laplacian score. These new scores are computed without considering the class label of the images, contrary to what is done until now. Experiments, achieved on OuTex, USPTex, and BarkTex sets, show that these unsupervised scores give as good results as the supervised ones for LBP histogram selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.