Objective: Basal cell carcinoma (BCC) is the most common malignancy in humans and represents a growing public health care problem. The major etiological factors contributing to BCC development are exposure to ultraviolet radiation and genetic alterations. BCC is primarily caused by dysregulation of sonic Hedgehog (HH) signaling pathway in basal cells of the skin. BCC can be classified into low risk non-aggressive and high risk aggressive subtypes. BCC subtypes differentiation is essential for prognosis and for better disease management and treatment strategies. The aim of this study was to assess the correlation between PTCH1 protein expression level and the aggressiveness of BCC histopathology. Methods: Archival paraffin embedded blocks containing BCC were retrieved from a cohort of 101 patients. Immunohistochemistry staining was performed to assess the expression level of PTCH1 which is a key component of Hedgehog pathway. Results: 101 paraffin embedded samples were evaluated and classified as high risk and low risk BCC subtypes by histopathological finding. High risk BCC subtypes were found in 40 samples (39.6%) and low risk subtypes were identified in 61 samples (60.4%). Nodular was the most frequent subtype which was found in (56/ 101), followed by infiltrative (22/101) and micronodular (14/ 101) subtypes. Positive PTCH1 expression was found highest in nodular subtypes (46.5%). Conclusion: In this study, the correlation between low risk or high risk BCC subtypes and PTCH1 expression level was not statistically significant (p>0.05), but the frequency of positive PTCH1 expression was found to be higher in low risk subtypes than high risk BCC subtypes.
CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC’s functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications.
Rapid methodological advances in statistical and computational genomics have enabled researchers to better identify and interpret both rare and common variants responsible for complex human diseases. As we continue to see an expansion of these advances in the field, it is now imperative for researchers to understand the resources and methodologies available for various data types and study designs. In this review, we provide an overview of recent methods for identifying rare and common variants and understanding their roles in disease etiology. Additionally, we discuss the strategy, challenge, and promise of gene therapy. As computational and statistical approaches continue to improve, we will have an opportunity to translate human genetic findings into personalized health care.
Purpose
Four consanguineous Jordanian families with affected members of unknown gastrointestinal related diseases were recruited to assess the utility and efficiency of whole exome sequencing (WES) in reaching the definitive diagnosis.
Patients and Methods
Members from four consanguineous Jordanian families were recruited in this study. Laboratory and imaging tests were used for initial diagnosis, followed by performing WES to test all affected members for the detection of causative variants. Sanger sequencing was used for validation.
Results
We had a 100% success rate identifying each case presented in this study.
Conclusion
This is the first study applying a WES testing approach in the diagnosis of pediatric diseases in Jordan. Our results strongly suggest the need to implement WES as an evident diagnostic tool in the clinical setting, as it will subsequently allow for proper disease management and genetic counseling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.