Oxidative stress (OS) has been linked to blood–brain barrier (BBB) dysfunction which in turn has been implicated in the initiation and propagation of some neurological diseases. In this study, we profiled, for the first time, two endothelioma cell lines of mouse brain origin, commonly used as in vitro models of the blood–brain barrier, for their resistance against oxidative stress using viability measures and glutathione contents as markers. OS was induced by exposing cultured cells to varying concentrations of hydrogen peroxide and fluorescence microscopy/spectrometry was used to detect and estimate cellular glutathione contents. A colorimetric viability assay was used to determine changes in the viability of OS-exposed cells. Both the b.End5 and bEnd.3 cell lines investigated showed demonstrable content of glutathione with a statistically insignificant difference in glutathione quantity per unit cell, but with a statistically significant higher capacity for the b.End5 cell line for de novo glutathione synthesis. Furthermore, the b.End5 cells demonstrated greater oxidant buffering capacity to higher concentrations of hydrogen peroxide than the bEnd.3 cells. We concluded that mouse brain endothelial cells, derived from different types of cell lines, differ enormously in their antioxidant characteristics. We hereby recommend caution in making comparisons across BBB models utilizing distinctly different cell lines and require further prerequisites to ensure that in vitro BBB models involving these cell lines are reliable and reproducible.
Background: Glioblastoma multiforme (GBM) is a highly invasive brain tumour, characterized by its ability to secrete factors promoting its virulence. Brain endothelial cells (BECs) in the GBM environment are physiologically modulated. The present study investigated the modulatory effects of normoxically and hypoxically induced glioblastoma U-87 cell secretions on BECs. Methods: Conditioned media (CM) were derived by cultivating U-87 cells under hypoxic incubation (5% O2) and normoxic incubation (21% O2). Treated bEnd.3 cells were evaluated for mitochondrial dehydrogenase activity, mitochondrial membrane potential (ΔΨm), ATP production, transendothelial electrical resistance (TEER), and endothelial tight-junction (ETJ) gene expression over 96 h. Results: The coculture of bEnd.3 cells with U-87 cells, or exposure to either hypoxic or normoxic U-87CM, was associated with low cellular viability. The ΔΨm in bEnd.3 cells was hyperpolarized after hypoxic U-87CM treatment (p < 0.0001). However, normoxic U-87CM did not affect the state of ΔΨm. BEC ATP levels were reduced after being cocultured with U-87 cells, or with hypoxic and normoxic CM (p < 0.05). Suppressed mitochondrial activity in bEnd.3 cells was associated with increased transendothelial permeability, while bEnd.3 cells significantly increased the gene expression levels of ETJs (p < 0.05) when treated with U-87CM. Conclusions: Hypoxic and normoxic glioblastoma paracrine factors differentially suppressed mitochondrial activity in BECs, increasing the BECs’ barrier permeability.
Background: The blood-brain barrier (BBB) is a central nervous system protective barrier formed primarily of endothelial cells that regulate the entry of substances and cells from entering the brain. However, the BBB integrity is disrupted in disease, including cancer, allowing toxic substances, molecules, and circulating cells to enter the brain. This study aimed to determine the mitochondrial changes in brain endothelial cells co-cultured with cancer cells. Method: Brain endothelial cells (bEnd.3) were co-cultivated with various concentrations of breast cancer (MCF7) conditioned media (CM) generated under normoxic (21% O2) and hypoxic conditions (5% O2). The mitochondrial activities (including; dehydrogenases activity, mitochondrial membrane potential (ΔΨm), and ATP generation) were measured using Polarstar Omega B.M.G-Plate reader. Trans-endothelial electrical resistance (TEER) was evaluated using the EVOM system, followed by quantifying gene expression of the endothelial tight junction (ETJs) using qPCR. Results: bEnd.3 cells had reduced cell viability after 72 h and 96 h exposure to MCF7CM under hypoxic and normoxic conditions. The ΔΨm in bEnd.3 cells were hyperpolarized after exposure to the hypoxic MCF7CM (p < 0.0001). However, the normoxic MCF7CM did not significantly affect the state of ΔΨm in bEnd.3 cells. ATP levels in bEnd.3 co-cultured with hypoxic and normoxic MCF7CM was significantly reduced (p < 0.05). The changes in brain endothelial mitochondrial activity were associated with a decrease in TEER of bEnd.3 monolayer co-cultured with MCF7CM under hypoxia (p = 0.001) and normoxia (p < 0.05). The bEnd.3 cells exposed to MCF7CM significantly increased the gene expression level of ETJs (p < 0.05). Conclusions: MCF7CM modulate mitochondrial activity in brain endothelial cells, affecting the brain endothelial barrier function.
Background: This study aimed to investigate the disruption of cell cycle phases of bEnd.3 cells exposed to cancer paracrine secretion. Cancer cells have been reported to use the secretion of paracrine factors to compromise the endothelial barrier to prepare for their passage into the parenchyma. As cancer cells are known to act differently under conditions of hypoxia, we investigated how conditional media (CM) derived from breast and glioblastoma cells incubated under conditions of normoxia and hypoxia would affect proliferation of brain endothelial cells (bEnd.3). Methods: Brain endothelial cells (bEnd.3) were cultivated with normoxic and hypoxic CM generated from breast cancer MCF7 cells and glioblastoma U-87 cells. Cell proliferation was evaluated using the trypan blue exclusion assay and phases of the cell cycle were evaluated using flow cytometry. Results: bEnd.3 proliferations was suppressed more aggressively with hypoxic CM after 72 and 96 h; cell cycle analysis showed that paracrine treatment tended to prevent BECs from entering the G2 phase, thus suppressing cell division. Conclusions: MCF7 and U-87 cells induce suppressed proliferation of BECs deferentially under hypoxia by blocking cell cycle progression to the G2 phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.