The wide geographic distribution of Schistosoma mansoni, a digenetic trematode and parasite of humans, is determined by the occurrence of its intermediate hosts, freshwater snails of the genus Biomphalaria (Preston 1910). We present phylogenetic analyses of 23 species of Biomphalaria, 16 Neotropical and seven African, including the most important schistosome hosts, using partial mitochondrial ribosomal 16S and complete nuclear ribosomal ITS1 and ITS2 nucleotide sequences. A dramatically better resolution was obtained by combining the data sets as opposed to analyzing each separately, indicating that there is additive congruent signal in each data set. Neotropical species are basal, and all African species are derived, suggesting an American origin for the genus. We confirm that a proto-Biomphalaria glabrata gave rise to all African species through a trans-Atlantic colonization of Africa. In addition, genetic distances among African species are smaller compared with those among Neotropical species, indicating a more recent origin. There are two species-rich clades, one African with B. glabrata as its base, and the other Neotropical. Within the African clade, a wide-ranging tropical savannah species, B. pfeifferi, and a Nilotic species complex, have both colonized Rift Valley lakes and produced endemic lacustrine forms. Within the Neotropical clade, two newly acquired natural hosts for S. mansoni (B. straminea and B. tenagophila) are not the closest relatives of each other, suggesting two separate acquisition events. Basal to these two species-rich clades are several Neotropical lineages with large genetic distances between them, indicating multiple lineages within the genus. Interesting patterns occur regarding schistosome susceptibility: (1) the most susceptible hosts belong to a single clade, comprising B. glabrata and the African species, (2) several susceptible Neotropical species are sister groups to apparently refractory species, and (3) some basal lineages are susceptible. These patterns suggest the existence of both inherent susceptibility and resistance, but also underscore the ability of S. mansoni to adapt to and acquire previously unsusceptible species as hosts. Biomphalaria schrammi appears to be distantly related to other Biomphalaria as well as to Helisoma, and may represent a separate or intermediate lineage.
Summary Background Schistosomiasis is a neglected tropical disease of global medical and veterinary importance. As efforts to eliminate schistosomiasis as a public health problem and interrupt transmission gather momentum, the potential zoonotic risk posed by livestock Schistosoma species via viable hybridisation in sub-Saharan Africa have been largely overlooked. We aimed to investigate the prevalence, distribution, and multi-host, multiparasite transmission cycle of Haematobium group schistosomiasis in Senegal, West Africa. Methods In this epidemiological study, we carried out systematic surveys in definitive hosts (humans, cattle, sheep, and goats) and snail intermediate hosts, in 2016–18, in two areas of Northern Senegal: Richard Toll and Lac de Guiers, where transmission is perennial; and Barkedji and Linguère, where transmission is seasonal. The occurrence and distribution of Schistosoma species and hybrids were assessed by molecular analyses of parasitological specimens obtained from the different hosts. Children in the study villages aged 5–17 years and enrolled in school were selected from school registers. Adults (aged 18–78 years) were self-selecting volunteers. Livestock from the study villages in both areas were also randomly sampled, as were post-mortem samples from local abattoirs. Additionally, five malacological surveys of snail intermediate hosts were carried out at each site in open water sources used by the communities and their animals. Findings In May to August, 2016, we surveyed 375 children and 20 adults from Richard Toll and Lac de Guiers, and 201 children and 107 adults from Barkedji and Linguère; in October, 2017, to January, 2018, we surveyed 386 children and 88 adults from Richard Toll and Lac de Guiers, and 323 children and 85 adults from Barkedji and Linguère. In Richard Toll and Lac de Guiers the prevalence of urogenital schistosomiasis in children was estimated to be 87% (95% CI 80–95) in 2016 and 88% (82–95) in 2017–18. An estimated 63% (in 2016) and 72% (in 2017–18) of infected children were shedding Schistosoma haematobium–Schistosoma bovis hybrids. In adults in Richard Toll and Lac de Guiers, the prevalence of urogenital schistosomiasis was estimated to be 79% (52–97) in 2016 and 41% (30–54) in 2017–18, with 88% of infected samples containing S haematobium–S bovis hybrids. In Barkedji and Linguère the prevalence of urogenital schistosomiasis in children was estimated to be 30% (23–38) in 2016 and 42% (35–49) in 2017–18, with the proportion of infected children found to be shedding S haematobium–S bovis hybrid miracidia much lower than in Richard Toll and Lac de Guiers (11% in 2016 and 9% in 2017–18). In adults in Barkedji and Linguère, the prevalence of urogenital schistosomiasis was estimated to be 26% (17–36) in 2016 and 47% (34–...
Schistosoma mansoni is the most widespread of the human-infecting schistosomes, present in 54 countries, predominantly in Africa, but also in Madagascar, the Arabian Peninsula, and the Neotropics. Adult-stage parasites that infect humans are also occasionally recovered from baboons, rodents, and other mammals. Larval stages of the parasite are dependent upon certain species of freshwater snails in the genus Biomphalaria, which largely determine the parasite's geographical range. How S. mansoni genetic diversity is distributed geographically and among isolates using different hosts has never been examined with DNA sequence data. Here we describe the global phylogeography of S. mansoni using more than 2500 bp of mitochondrial DNA (mtDNA) from 143 parasites collected in 53 geographically widespread localities. Considerable within-species mtDNA diversity was found, with 85 unique haplotypes grouping into five distinct lineages. Geographical separation, and not host use, appears to be the most important factor in the diversification of the parasite. East African specimens showed a remarkable amount of variation, comprising three clades and basal members of a fourth, strongly suggesting an East African origin for the parasite 0.30-0.43 million years ago, a time frame that follows the arrival of its snail host. Less but still substantial variation was found in the rest of Africa. A recent colonization of the New World is supported by finding only seven closely related New World haplotypes which have West African affinities. All Brazilian isolates have nearly identical mtDNA haplotypes, suggesting a founder effect from the establishment and spread of the parasite in this large country.
The complex multi-host disease dynamics of schistosomiasis and Schistosoma spp., including the emergence of zoonotic parasite hybrids, remain largely unexplored in West Africa. We elucidated the role of wild small mammals as reservoir for zoonotic Schistosoma species and hybrids in endemic areas of Senegal. We identified Schistosoma mansoni, Schistosoma bovis, and a Schistosoma haematobium/S. bovis hybrid, with local prevalence in wild rodents ranging from 1.9% to 28.6%. Our findings indicate that rodents may be an important local reservoir for zoonotic schistosomiasis in endemic areas of West Africa, amplifying transmission to humans and acting as natural definitive hosts of schistosome hybrids.
T he collective image of schistosomiasis in Africa remains that of a mainly human-driven disease; schistosomiasis inflicted a burden of >2.5 million disability-adjusted life-years in 2016 and required that ≈200 million persons be treated with preventive chemotherapy in 2017 (1). As pledged by the World Health Organization (2), the goal to eliminate schistosomiasis as a public health problem by 2030 can only be achieved through transdisciplinary programs that improve sanitation and hygiene and provide access to safe water sources, health education, and chemotherapeutic treatments for at-risk populations. Furthermore, answers on the host specificity of human schistosomes and the impact of multihost transmission on disease control strategies remain imperative (3). In Asia, vertebrate reservoirs for Schistosoma japonicum (largely ruminants, rodents, and other mammals) play a crucial role in perpetuating the transmission of this zoonotic parasite, even under strong multisectoral control pressures (4,5). Likewise, in the Caribbean and South America, where evidence supports the introduction of Schistosoma mansoni from West Africa via the transatlantic slave trade (6), rodent populations have become the main reservoirs of S. mansoni; transmission in this region can be maintained in absence of human activity (7,8). The magnitude of Schistosoma zoonotic transmission, in which both domestic animals and wildlife are active participants, is yet to be determined in endemic countries across Africa. Sporadic investigations have attempted to answer whether schistosomes infecting humans are zoonotic and which, if any, other vertebrate species might be acting as definitive hosts (9-11). The emergence (or discovery) of hybridization events involving S. mansoni, Schistosoma haematobium, and other Schistosoma spp. in livestock and wildlife has raised the profile of these definitive hosts and the schistosomes they harbor (12,13). The interspecific interactions between Schistosoma spp. and the potential involvement of domestic and wild vertebrates in the transmission dynamics of these species might partially be a consequence of anthropogenic changes, loss
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.