Various types of continuity for preference relations on a metric space are examined constructively. In particular, necessary and sufficient conditions are given for an order-dense, strongly extensional preference relation on a complete metric space to be continuous. It is also shown, in the spirit of constructive reverse mathematics, that the continuity of sequentially continuous, order-dense preference relations on complete, separable metric spaces is connected to Ishihara's principle BD-N, and therefore is not provable within Bishop-style constructive mathematics alone.
This paper has several purposes. We present through a critical review the results from already published papers on the constructive semigroup theory, and contribute to its further development by giving solutions to open problems. We also draw attention to its possible applications in other (constructive) mathematics disciplines, in computer science, social sciences, economics, etc. Another important goal of this paper is to provide a clear, understandable picture of constructive semigroups with apartness in Bishop’s style both to (classical) algebraists and the ones who apply algebraic knowledge.
Semigroups aren't a barren, sterile flower on the tree of algebra, they are a natural algebraic approach to some of the most fundamental concepts of algebra (and mathematics in general), this is why they have been in existence for more then half a century, and this is why they are here to stay."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.