In the present study, the mechanical properties of a dry-processed polyethylene (PE) separator are investigated in terms of deformation and failure limits. The focus is set on the anisotropic mechanical behavior of this material. A deeper understanding of the damage mechanism is important for further safety and crashworthiness investigations and predictions of damage before failure. It has been found that separator integrity is one of the crucial parts in preventing internal short circuit and thermal runaway in lithium-ion (Li-ion) batteries. Based on uniaxial tensile tests with local strain measurement, a novel failure criterion for finite element analysis (FEA), using the explicit FEA solver Altair Radioss, has been developed to predict the effect of high mechanical loads with respect to triaxiality, large plastic strain and orthotropy. Finally, a simulation model of a PE separator was developed combining the novel failure criterion with Hill’s yield surface and a Swift–Voce hardening rule. The model succeeded in predicting the anisotropic response of the PE separator due to deformation and failure. The proposed failure model can also be combined with other constitutive material laws.
The present study is focused on the development of a material model where the orthotropic-visco-elastic and orthotropic-visco-plastic mechanical behavior of a polymeric material is considered. The increasing need to reduce the climate-damaging exhaust gases in the automotive industry leads to an increasing usage of electric powered drive systems using Lithium-ion (Li-ion) batteries. For the safety and crashworthiness investigations, a deeper understanding of the mechanical behavior under high and dynamic loads is needed. In order to prevent internal short circuits and thermal runaways within a Li-ion battery, the separator plays a crucial role. Based on results of material tests, a novel material model for finite element analysis (FEA) is developed using the explicit solver Altair Radioss. Based on this model, the visco-elastic-orthotropic, as well as the visco-plastic-orthotropic, behavior until failure can be modeled. Finally, a FE simulation model of the separator material is performed, using the results of different tensile tests conducted at three different velocities, 0.1 mm·s−1, 1.0 mm·s−1 and 10.0 mm·s−1 and different orientations of the specimen. The purpose is to predict the anisotropic, rate-dependent stiffness behavior of separator materials in order to improve FE simulations of the mechanical behavior of batteries and therefore reduce the development time of electrically powered vehicles and consumer goods. The present novel material model in combination with a well-suited failure criterion, which considers the different states of stress and anisotropic-visco-dependent failure limits, can be applied for crashworthiness FE analysis. The model succeeded in predicting anisotropic, visco-elastic orthotropic and visco-plastic orthotropic stiffness behavior up to failure.
The need for higher capacity battery cells has increased significantly during the past years. Therefore, the subject of this study is to investigate the behavior of high performance 21700 Lithium-Ion cylindric battery cells under several abuse conditions, represented by high mechanical loads with different velocities and states of charge (SoC), and to develop a finite element analysis (FEA) model, using the OpenRadioss’ explicit solver capabilities. The present study is focused on the investigation of the behavior of these cells under high mechanical loads with different loading velocities and different states of charge. The aim of the study is to provide a tool to predict the point of an internal short circuit in FEA, with a very good approximation. Experiments were completed using a hydraulic flat-compression test, set up at four different states of charge, 40%, 60%, 80% and 100%, and three different loading velocities of 10 mms−1, 100 mms−1 and 1000 mms−1. A homogenized FEA model is developed to predict the internal damage of the separator, which can lead to a short circuit with a possible thermal runaway under abusive load conditions. The present model, in combination with well identified material and fracture parameters, succeeded in the prediction of the mechanical behavior at various states of charge and mechanical loading conditions; it can also be used for further crashworthiness analysis within a full-car FEA model. This accurate cell model will be the first building block to optimize the protective structures of batteries in electric vehicles, and reduce their weight through a deeper understanding of their overall behavior during the different crash cases.
Intervertebral discs are microstructurally complex spinal tissues that add greatly to the flexibility and mechanical strength of the human spine. Attempting to provide an adjustable basis for capturing a wide range of mechanical characteristics and to better address known challenges of numerical modeling of the disc, we present a robust finite-element-based model formulation for spinal segments in a hyperelastic framework using tetrahedral elements. We evaluate the model stability and accuracy using numerical simulations, with particular attention to the degenerated intervertebral discs and their likely skewed and narrowed geometry. To this end, 1) annulus fibrosus is modeled as a fiber-reinforced Mooney-Rivlin type solid for numerical analysis. 2) An adaptive state-variable dependent explicit time step is proposed and utilized here as a computationally efficient alternative to theoretical estimates. 3) Tetrahedral-element-based FE models for spinal segments under various loading conditions are evaluated for their use in robust numerical simulations. For flexion, extension, lateral bending, and axial rotation load cases, numerical simulations reveal that a suitable framework based on tetrahedral elements can provide greater stability and flexibility concerning geometrical meshing over commonly employed hexahedral-element-based ones for representation and study of spinal segments in various stages of degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.