The most prevalent phyla in sputum were Proteobacteria (44%) and Firmicutes (16%), followed by Actinobacteria (13%). A greater microbial diversity was found in patients with moderate-to-severe disease, and alpha diversity showed a statistically significant decrease in patients with advanced disease when assessed by Shannon ( ؍ 0.528; P ؍ 0.029, Spearman correlation coefficient) and Chao1 ( ؍ 0.53; P ؍ 0.028, Spearman correlation coefficient) alpha-diversity indexes. The higher severity that characterizes advanced COPD is paralleled by a decrease in the diversity of the bronchial microbiome, with a loss of part of the resident flora that is replaced by a more restricted microbiota that includes PPMs.
i Culture of bacteria from bronchial secretions in respiratory patients has low sensitivity and does not allow for complete assessment of microbial diversity across different bronchial compartments. In addition, a significant number of clinical studies are based on sputum samples, and it is not known to what extent they describe the real diversity of the mucosa. In order to identify previously unrecognized lower airway bacteria and to investigate the complexity and distribution of microbiota in patients with chronic obstructive pulmonary disease (COPD), we performed PCR amplification and pyrosequencing of the 16S rRNA gene in patients not showing signs or symptoms of infection. Four types of respiratory samples (sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa) were taken from each individual, obtaining on average >1,000 16S rRNA sequences per sample. The total number of genera per patient was >100, showing a high diversity, with Streptococcus, Prevotella, Moraxella, Haemophilus, Acinetobacter, Fusobacterium, and Neisseria being the most commonly identified. Sputum samples showed significantly lower diversity than the other three sample types. Lower-bronchial-tree samples, i.e., bronchoalveolar lavage and bronchial mucosa, showed a very similar bacterial compositions in contrast to sputum and bronchial aspirate samples. Thus, sputum and bronchial aspirate samples are upper bronchial tree samples that are not representative of the lower bronchial mucosa flora, and bronchoalveolar lavage samples showed the results closest to those for the bronchial mucosa. Our data confirm that the bronchial tree is not sterile in COPD patients and support the existence a different microbiota in the upper and lower compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.