The manifestations of Parkinson's disease are caused by reduced dopaminergic innervation of the striatum. Loss-of-function mutations in the DJ-1 gene cause early-onset familial parkinsonism. To investigate a possible role for DJ-1 in the dopaminergic system, we generated a mouse model bearing a germline disruption of DJ-1. Although DJ-1(-/-) mice had normal numbers of dopaminergic neurons in the substantia nigra, evoked dopamine overflow in the striatum was markedly reduced, primarily as a result of increased reuptake. Nigral neurons lacking DJ-1 were less sensitive to the inhibitory effects of D2 autoreceptor stimulation. Corticostriatal long-term potentiation was normal in medium spiny neurons of DJ-1(-/-) mice, but long-term depression (LTD) was absent. The LTD deficit was reversed by treatment with D2 but not D1 receptor agonists. Furthermore, DJ-1(-/-) mice displayed hypoactivity in the open field. Collectively, our findings suggest an essential role for DJ-1 in dopaminergic physiology and D2 receptor-mediated functions.
Increased caloric intake in dietary obesity could be driven by central mechanisms that regulate reward-seeking behavior. The mesolimbic dopamine system, and the nucleus accumbens in particular, underlies both food and drug reward. We investigated whether rat dietary obesity is linked to changes in dopaminergic neurotransmission in that region. Sprague-Dawley rats were placed on a cafeteria-style diet to induce obesity or a laboratory chow diet to maintain normal weight gain. Extracellular dopamine levels were measured by in vivo microdialysis. Electrically evoked dopamine release was measured ex vivo in coronal slices of the nucleus accumbens and the dorsal striatum using real-time carbon fiber amperometry. Over 15 weeks, cafeteria-diet fed rats became obese (>20% increase in body weight) and exhibited lower extracellular accumbens dopamine levels than normal weight rats (0.007±0.001 vs. 0.023±0.002 pmol/sample; P<0.05). Dopamine release in the nucleus accumbens of obese rats was stimulated by a cafeteria-diet challenge, but it remained unresponsive to a laboratory chow meal. Administration of d-amphetamine (1.5 mg/kg i.p.) also revealed an attenuated dopamine response in obese rats. Experiments measuring electrically evoked dopamine signal ex vivo in nucleus accumbens slices showed a much weaker response in obese animals (12 vs. 25 × 10 6 dopamine molecules per stimulation, P<0.05). The results demonstrate that deficits in mesolimbic dopamine neurotransmission are linked to dietary obesity. Depressed dopamine release may lead obese animals to compensate by eating palatable "comfort" food, a stimulus that released dopamine when laboratory chow failed.Keywords nucleus accumbens; striatum; feeding; body weight; amphetamine; hyperphagia The rapid rise of dietary obesity in industrialized societies indicates that non-homeostatic signaling pathways that allow for chronic positive energy intake may be responsible. A crucial question is why laboratory animals and humans keep on eating energy-rich, palatable food to the degree that they become obese. From an evolutionary perspective, it is to be expected that the brain developed a system to respond to natural rewards, such as food. These central mechanisms are conserved across species in order to ensure survival (Kelley and Berridge,
A single monoamine can orchestrate different phases of a compound motor sequence in C. elegans through the synaptic and extra-synaptic activation of distinct classes of receptors.
Trapping of weak bases was utilized to evaluate stimulus‐induced changes in the internal pH of the secretory vesicles of chromaffin cells and enteric neurons. The internal acidity of chromaffin vesicles was increased by the nicotinic agonist 1,1‐dimethyl‐4‐phenyl‐piperazinium iodide (DMPP; in vivo and in vitro) and by high K+ (in vitro); and in enteric nerve terminals by exposure to veratridine or a plasmalemmal [Ca2+]o receptor agonist (Gd3+). Stimulation‐induced acidification of chromaffin vesicles was [Ca2+]o‐dependent and blocked by agents that inhibit the vacuolar proton pump (vH+‐ATPase) or flux through Cl− channels. Stimulation also increased the average volume of chromaffin vesicles and the proportion that displayed a clear halo around their dense cores (called active vesicles). Stimulation‐induced increases in internal acidity and size were greatest in active vesicles. Stimulation of chromaffin cells in the presence of a plasma membrane marker revealed that membrane was internalized in endosomes but not in chromaffin vesicles. The stable expression of botulinum toxin E to prevent exocytosis did not affect the stimulation‐induced acidification of the secretory vesicles of mouse neuroblastoma Neuro2A cells. Stimulation‐induced acidification thus occurs independently of exocytosis. The quantal size of secreted catecholamines, measured by amperometry in cultured chromaffin cells, was found to be increased either by prior exposure to L‐DOPA or stimulation by high K+, and decreased by inhibition of vH+‐ATPase or flux through Cl− channels. These observations are consistent with the hypothesis that the content of releasable small molecules in secretory vesicles is increased when the driving force for their uptake is enhanced, either by increasing the transmembrane concentration or pH gradients.
Parkin is the most common causative gene of juvenile and early-onset familial Parkinson's diseases and is thought to function as an E3 ubiquitin ligase in the ubiquitin-proteasome system. However, it remains unclear how loss of Parkin protein causes dopaminergic dysfunction and nigral neurodegeneration. To investigate the pathogenic mechanism underlying these mutations, we used parkin)/) mice to study its physiological function in the nigrostriatal circuit. Amperometric recordings showed decreases in evoked dopamine release in acute striatal slices of parkin)/) mice and reductions in the total catecholamine release and quantal size in dissociated chromaffin cells derived from parkin)/) mice. Intracellular recordings of striatal medium spiny neurons revealed impairments of long-term depression and long-term potentiation in parkin)/) mice, whereas long-term potentiation was normal in the Schaeffer collateral pathway of the hippocampus. Levels of dopamine receptors and dopamine transporters were normal in the parkin)/) striatum. These results indicate that Parkin is involved in the regulation of evoked dopamine release and striatal synaptic plasticity in the nigrostriatal pathway, and suggest that impairment in evoked dopamine release may represent a common pathophysiological change in recessive parkinsonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.