The technology and methods of testing the properties of varnish coatings used in motor vehicles are constantly and successfully developed. However, in the case of automotive varnish renovation coatings used in the repair of car bodies, the problem of fitting the quality of these coatings to the quality and current condition of the coating applied to undamaged vehicle components is not definitely solved. The main goal of the research was to determine the thickness and gloss distribution of the varnish coatings. The thickness and gloss of the varnish coating on the entire body of the vehicle were measured. Classical methods of assessing these properties were used. Defects in the renovation coating were also simulated, to show their negative impact on the varnish quality. The performed tests allowed for development of a procedure and algorithm for evaluation of the quality of the car’s renovation coating after the repair of the car body. The proposed procedure, expressed with the presented algorithm, allows to fit the obtained renovation coating to the quality and condition of the coating manufactured in factory on the car body in the range of its thickness up to 270 µm and gloss in the range of 5–90 GU. The developed procedure for the assessment of renovation coatings can be used in workshops that repair vehicle bodies. This will allow to improve the quality of renovation coatings and bring their properties, such as thickness or gloss, closer to those applied to the vehicle’s body at the factory.
Resistance spot welding is widely used in the fabrication of vehicle bodies and parts of their equipment. The article presents the methodology and the results of non-destructive ultrasonic testing of resistance spot welded joints of thin steel sheet with closed profile. Non-destructive test results were verified on the basis of welded joint area after destructive testing. The obtained results were used to develop an assessment technique for spot welded joints of closed profile with steel sheet, which could be used in factories employing such joints. In addition, the article makes comparison between the costs of the developed assessment technique and currently used destructive method.
The article presents the results of ultrasonic testing of Ti6Al4V material produced by the conventional method and the laser bed fusion method. Modern manufacturing techniques, such as additive manufacturing, allow the production of parts with complex shapes. It is important to control the condition of such components throughout their lifetime. The purpose of this article was to determine the basic acoustic properties of Ti6Al4V material produced by two different methods—bar drawing and the additive manufacturing method. On this basis, an inspection scheme was developed for adhesive joints, the components of which are made by additive manufacturing technology. The decibel drops in the amplitudes of pulses reflected from the boundary of the adhesive-Ti6Al4V-AM and adhesive-Ti6Al4V joints were determined. The decibel drops for the connection of materials made with additive technology are higher than for the material made in a conventional way. The difference in decibel drop in the amplitudes of the additive manufactured material versus the drawn rod, depending on the ultrasonic head, can be up to 60%. The results of the study provide an important practical guideline for testing adhesive joints of parts made with additive manufacturing technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.