BackgroundBifidobacteria constitute a specific group of commensal bacteria that commonly inhabit the mammalian gastrointestinal tract. Bifidobacterium breve UCC2003 was previously shown to utilize a variety of plant/diet/host-derived carbohydrates, including cellodextrin, starch and galactan, as well as the mucin and HMO-derived monosaccharide, sialic acid. In the current study, we investigated the ability of this strain to utilize parts of a host-derived source of carbohydrate, namely the mucin glycoprotein, when grown in co-culture with the mucin-degrading Bifidobacterium bifidum PRL2010.ResultsB. breve UCC2003 was shown to exhibit growth properties in a mucin-based medium, but only when grown in the presence of B. bifidum PRL2010, which is known to metabolize mucin. A combination of HPAEC-PAD and transcriptome analyses identified some of the possible monosaccharides and oligosaccharides which support this enhanced co-cultivation growth/viability phenotype.ConclusionThis study describes the potential existence of a gut commensal relationship between two bifidobacterial species. We demonstrate the in vitro ability of B. breve UCC2003 to cross-feed on sugars released by the mucin-degrading activity of B. bifidum PRL2010, thus advancing our knowledge on the metabolic adaptability which allows the former strain to colonize the (infant) gut by its extensive metabolic abilities to (co-)utilize available carbohydrate sources.
Most secreted and cell membrane proteins in mammals are glycosylated. Many of these glycoproteins are also prevalent in milk and play key roles in the biomodulatory properties of milk and ultimately in determining milk's nutritional quality. Although a significant amount of information exists on the types and roles of free oligosaccharides in milk, very little is known about the glycans associated with milk glycoproteins, in particular, the biological properties that are linked to their presence. The main glycoproteins found in bovine milk are lactoferrin, the immunoglobulins, glycomacropeptide, a glycopeptide derived from κ-casein, and the glycoproteins of the milk fat globule membrane. Here, we review the glycoproteins present in bovine milk, the information currently available on their glycosylation and the biological significance of their oligosaccharide chains.
In this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (3′sialyllactose and 6′sialyllactose) and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 to HT-29 and Caco-2 human intestinal cells. Treatment with the commercial prebiotic or 3′sialyllactose did not enhance adhesion. However, treatment with 6′sialyllactose resulted in increased adhesion (4.7 fold), while treatment with a mixture of 3′- and 6′-sialyllactose substantially increased adhesion (9.8 fold) to HT-29 intestinal cells. Microarray analyses were subsequently employed to investigate the transcriptional response of B. longum subsp. infantis to the different oligosaccharide treatments. This data correlated strongly with the observed changes in adhesion to HT-29 cells. The combination of 3′- and 6′-sialyllactose resulted in the greatest response at the genetic level (both in diversity and magnitude) followed by 6′sialyllactose, and 3′sialyllactose alone. The microarray data was further validated by means of real-time PCR. The current findings suggest that the increased adherence phenotype of Bifidobacterium longum subsp. infantis resulting from exposure to milk oligosaccharides is multi-faceted, involving transcription factors, chaperone proteins, adhesion-related proteins, and a glycoside hydrolase. This study gives additional insight into the role of milk oligosaccharides within the human intestine and the molecular mechanisms underpinning host-microbe interactions.
The findings provide strong support for the withdrawal reversal hypothesis. In particular, cognitive performance was found to be affected adversely by acute caffeine withdrawal and, even in the context of alertness lowered by sleep restriction, cognitive performance was not improved by caffeine in the absence of these withdrawal effects. Different patterns of effects (or lack of effects) of caffeine and caffeine withdrawal were found for other variables, but overall these results also suggest that there is little benefit to be gained from caffeine consumption.
Mucins are the principal components of mucus and mucin glycosylation has important roles in defence, microbial adhesion, immunomodulation, inflammation and cancer. Mucin expression and glycosylation are dynamic, responding to changes in local environment and disease. Potentially hundreds of heterogenous glycans can substitute one mucin molecule and it is difficult to identify biologically accessible glyco-epitopes. Thirty-seven mucins, from the reproductive and gastrointestinal (GI) tracts of six species (bovine, ovine, equine, porcine, chicken and deer) and from two human-derived cell lines, were purified. Following optimisation of mucin printing to construct a novel mucin microarray, the glycoprofiles of the whole mucins were compared using a panel of lectins and one antibody. Accessible glycomotifs of GI mucins varied according to species and localisation of mucin origin, with terminal fucose, the sialyl T-antigen and N-linked oligosaccharides identified as potentially important. The occurrence of T-and sialyl T-antigen varied in bovine and ovine reproductive tract mucins, and terminal N-acetylgalactosamine (GalNAc) and sulfated carbohydrates were detected. This study introduces natural mucin microarrays as an effective tool for profiling mucin glyco-epitopes and highlights their potential for discovery of biologically important motifs in bacterial-host interactions and fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.