Contamination of soil by toxic elements is a global issue of growing importance due to the increased anthropogenic impact on the natural environment. Conventional methods of soil decontamination possess disadvantages in forms of environmental and financial burdens. This fact leads to the search for alternative approaches of remediation of contaminated sites. One such approach includes phytoremediation. Phytoremediation advantages consist of low costs and small environmental impact. Several fast-growing energy plant species are suitable for phytoremediation purposes. Our article focuses on the phytoremediation potential of energy woody crops of Salix and Populus, and energy grasses Miscanthus and Arundo, which are grown primarily for biomass production. This approach links the environmentally friendly and economically less demanding remediation approach with the production of the local sustainable form of energy that decreases dependency on external energy supplies. Energy plants are able to provide high biomass yields in a short period of time, they are resistant against abiotic stress conditions and have the ability to accumulate toxic substances, thus helping to restore the desirable soil properties. The phytoremediation research is very interdisciplinary in its nature. In order to implement phytoremediation practices together with bioenergy successfully, it is crucial to involve site owners, local people, farmers, technology providers and consultants, remediation experts, sustainability assessors, regulatory agencies and certification bodies, biorefineries, financial sponsors, NGOs and other voluntary organizations. Some disadvantages and challenges of phytoremediation are also indicated.
Although the effects of climate change across the world and regions are different, its adverse effects on socioeconomic systems and landscapes are increasingly important and require an active solution. There is a gradual change of the main features of the territory, which also changes the possibility and the method of its use, as well as the structure of the population itself. Renewable energy plays a key role in the longterm strategy of the European Commission (a secure, competitive and decarbonized energy system in 2050), as outlined in its Energy Roadmap 2050 [1].
The energy-efficient low-carbon EU economy (known as the 20-20-20) sets fundamental objectives in reducing greenhouse gas emissions (20%), increasing the share of renewable energy sources (20%) and saving primary energy consumption (20%). The objectives are incorporated in the National Renewable Energy Action Plans (NREAPs). Slovakia has to increase the share of renewable energy sources (RES) by 14% in its energy mix by 2020. Currently, the most widely used RES are water and solar energy, biomass and biogas. Our country has suitable ecological conditions for growing the so called energy crops in lowland and upland areas. So far, however, there is a lack of science-based information on the potential production of biomass in different soil-ecological and climatic conditions of the Slovak Republic. Our experimental research is focused on quantification of biomass production of various willow (genus Salix), poplar (genus Populus) and silvergrass (Miscanthus sinensis) varieties grown in ecological conditions of southern Slovakia. We evaluated the biomass production of the studied crops. The results were evaluated in terms of the EU call (2013): to obtain more energy while reducing inputs and negative environmental impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.