In the present work, one near-eutectic and three hypoeutectic Sn-Ag-Cu alloys have been employed for soldering by induction heating. The alloys were produced by induction melting of high purity Ag, Cu, and Sn lumps. The melting behavior of the alloys was investigated by differential scanning calorimetry. The solder alloys were subsequently applied for soldering by conventional hot-plate heating as well as induction heating and both soldering times and peak temperatures were recorded during soldering. Solder joints of two copper sheets were produced. The electrical resistance, tensile strength, and microstructure were analyzed on each soldered joint. The results indicate that the physical and mechanical properties of solder joints are determined by their chemical composition and soldering technology. Induction soldered joints not only have a slightly higher electrical resistivity but also higher mechanical strength, except of the 0.3 wt.% Ag hypoeutectic solder. The highest increase in ultimate tensile strength (28%) was observed for induction soldered joints with 1 wt.% Ag hypoeutectic solder. This effect is ascribed to the homogenous distribution of the intermetallic compounds within the eutectic in the alloy microstructure. The homogenous distribution is aided by rotation of liquid solder due to eddy currents and high-frequency magnetic field generated during induction heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.