Abstract.Degradation of triamcinolone acetonide (TCA) in an ointment was investigated. TCA appeared to be concentrated in propylene glycol (PG) which in turn is dispersed in a lanolin-petrolatum mixture. Two predominant degradation products were identified: a 21-aldehyde and a 17-carboxylic acid. The 21-aldehyde is formed after TCA is oxidized by O 2 , a reaction that is catalyzed by trace metals. Logically, the content of trace metals has a profound effect on the degradation rate. It was shown that trace metals are extracted from lanolin and petrolatum by PG, increasing the concentration in PG. In accordance with these findings, TCA degrades faster in PG that is present in the ointment formulation than in regular PG. The 21-aldehyde was confirmed to be a primary degradation product, while the 17-carboxylic acid was identified as a secondary degradation product. Based on the mechanism of degradation, the ointment can be stabilized by the addition of sodium metabisulfite which was shown to reside also in the PG phase within the ointment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.