Some basic aspects of capillary electrophoresis (CE) separations on a poly(methyl methacrylate) chip provided with two separation channels in the column-coupling (CC) configuration and on-column conductivity detectors were studied. The CE methods employed in this study included isotachophoresis (ITP), capillary zone electrophoresis (CZE), and CZE with on-line ITP sample pretreatment (ITP-CZE). Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed, and electrophoresis was a dominant transport process in the separations performed by these methods. Very reproducible migration velocities of the separated constituents were typical under such transport conditions, and consequently, test analytes could be quantified by various ITP techniques with 1-2% RSD. The CC configuration of the separation channels provides means for an effective combination of an enhanced load capacity of the separation system with high detection sensitivities for the analytes in concentration-cascade ITP separations. In this way, for example, succinate, acetate, and benzoate could be separated also in instances when they were present in the loaded sample (1.2 microL) at 1 mmol/L concentrations while their limits of detection ranged from 8 to 12 micromol/L concentrations. A well-defined ITP concentration of the analyte(s) combined with an in-column sample cleanup (via an electrophoretically driven removal of the matrix constituents from the separation compartment) can be integrated into the separations performed on the CC chip. These sample pretreatment capabilities were investigated in ITP-CZE separations of model samples in which nitrite, phosphate, and fluoride (each at a 10 micromol/L concentration) accompanied matrix constituents (sulfate and chloride) at considerably higher concentrations. Here, both the concentration of the analytes and cleanup of the sample were included in the ITP separation in the first separation channel while the second separation channel served for the CZE separation of the ITP pretreated sample and the detection of the analytes.
This review focuses on capillary electrophoretic separations performed on capillary electrophoresis chips (CE chips) with hydrodynamically closed separation systems in a context with transport processes (electroosmotic flow (EOF)) and hydrodynamic flow (HDF)) that may accompany the separations in these devices. It also reflects some relevant works dealing with conventional CE operating under such hydrodynamic conditions. The use of zone electrophoresis (ZE), isotachophoresis (ITP) and their on-line combination (ITP-ZE) on the single-column and column-coupling CE chips with the closed separation systems and related problems are key topics of the review. Some attention is paid to sample pretreatment in the separations performed on the CE chips. Here, mainly potentialities of the ITP-ZE combination in trace analysis applications of the miniaturized systems are discussed in a broader extent. Links between the ZE separation and detection provide a frame for the discussion of current status of the detection on the CE chips. Analytical applications illustrate potentialities of the CE chips operating with the closed separation systems (suppressed HDF and EOF) to the determination of small ions present in various matrices by ZE, ITP and ITP-ZE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.