Sixty-two Mycobacterium tuberculosis isolates were tested for pyrazinamidase activity, and their pyrazinamide susceptibility was determined by the radiometric method. Sequencing of pncA genes in the 23 resistant strains revealed mutations in 16 pyrazinamidase-negative strains, 11 of which had not been previously described. Six isolates containing wild-type pncA might possess alternative resistance mechanisms.
proteomics that resolve thousands of proteins on 2-D gels that need to be identified. Western blotting remains an important method in proteomics to identify specific proteins in complex protein mixtures (9,11). The staining/ destaining procedure described here will increase the reliability of assigning immuno-stained protein spots to their silver-stained counterparts in the reference 2-D gel pattern. REFERENCES 1. Blum, H., H. Beier, and H.J. Gross. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8 :93-99. 2. Görg, A., G. Boguth, C. Obermaier, A. Posch, and W. Weiss. 1995. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems.
Mutations in the pncA gene, encoding pyrazinamidase, are considered the major mechanism of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis, but resistant strains containing the wild-type gene have been described. The correlation of pncA sequence with PZA resistance level was examined for 21 M. tuberculosis clinical isolates. Susceptibility patterns were determined for 100, 300, and 900 microg/ml concentrations of the drug in BACTEC. Insertions and deletions and a substitution in the putative promoter region led to high-level resistance, whereas substitutions within the open reading frame seemed to confer variable levels of resistance. Variable resistance levels and PZase activities were also observed among isolates lacking pncA mutations. The high-level resistance (900 microg/ml) in pncA wild-type isolates highlights the clinical significance of these isolates. These data also suggest that there may still be more than one alternative mechanism leading to PZA resistance in M. tuberculosis isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.