Abstract. Boltonia decurrens is an endangered plant restricted to the Illinois River Valley. Its complex life cycle has evolved in response to the dynamics of the historic flood regime, which has changed dramatically in the last century due to the construction of navigation dams and agricultural levees. To explore the effects of these changes, we developed deterministic and stochastic matrix population models of the demography of Boltonia. We used periodic matrix models to incorporate intra-annual seasonal variation. We estimated parameters as a function of the timing of spring flood recession (early or late) and of growing season precipitation (high or low). Late floods and/or low precipitation reduce population growth (). Early floods and high precipitation lead to explosive population growth. Elasticity analysis shows that changes in floods and precipitation alter the life history pathways responsible for population growth, from annual to biennial and eventually clonal pathways. We constructed and analyzed a stochastic model in which flood timing and precipitation vary independently, and we computed the stochastic growth rate (log s ) and the variance growth rate ( 2 ) as functions of the frequency of late floods and low precipitation. Using historical data on floods and rainfall over the last 100 years, we found that log s has declined as a result of hydrological changes accompanying the regulation of the river. Stochastic elasticity analysis showed that over that time the contribution of annual life history pathways to log s has declined as the contributions of biennial and clonal pathways have increased. Over the same time period, 2 has increased, in agreement with observations of large fluctuations in local B. decurrens populations. Undoubtedly, many plant and animal species evolved in concert with dynamic habitats and are now threatened by anthropogenic changes in those dynamics. The data and analyses used in this study can be applied to management and development strategies to preserve other dynamic systems.
Abstract. Resource subsidies between habitats are common and create the potential for the propagation of environmental impacts across system boundaries. However, recent understanding of the potential for subsidy-mediated cross-system impact propagations is limited and primarily based on passive flows of nutrients and detritus or short-term effects. Here, we assess the effects of sustained alterations in aquatic insect emergence (active subsidy pathway), due to chronic stream pollution, for riparian spiders. The sustained reduction in aquatic insect densities at the polluted reaches resulted in a marked decline in web spider population density and a shift in spider community composition. Our results provide the first evidence that stream pollution can control populations and community structure of terrestrial predators via sustained alterations in aquatic subsidies, emphasizing the role of subtle trophic linkages in the transmission of environmental impacts across ecosystem boundaries.
Boltonia decurrens (Asteraceae), a federally listed, threatened floodplain species, requires regular flooding for suitable habitat and seed dispersal. Flood suppression and habitat destruction have resulted in fewer than 25 populations remaining throughout its 400 km range. Because individual populations are widely interspaced (>10 km) and subject to frequent extinction and colonization, seed dispersal along the river, not pollen flow, is likely the primary determinant of population genetic structure. We used neutral genetic markers (isozymes) assayed for fourteen populations to determine which demographic processes contribute to the genetic structure of B. decurrens. Significant genetic differentiation was detected among populations (F ST ¼ 0.098, P < 0.05) but not among regions (F RT ¼ 0.013, P > 0.05), suggesting that long-distance dispersal events occur and involve seed from a small number of populations. Correspondingly, we found no evidence of isolation by distance, and admixture analyses indicate that colonization events involve seed from 3 to 5 source populations. Individual populations exhibited high levels of fixation (mean F IS ¼ 0.192, P < 0.05), yet mean population outcrossing rates were high (t m ¼ 0.87-0.95) and spatial autocorrelation analyses revealed no fine-scale within population structure, indicating that inbreeding alone cannot explain the observed fixation. Rather, genetic bottlenecks, detected for 12 of 14 populations, and admixture at population founding may be important sources of fixation. These observations are consistent with a metapopulation model and confirm the importance of regular flooding events, capable of producing suitable habitat and dispersing seed long distances, to the long-term persistence of B. decurrens.
The purpose of our research was to determine why seeds of Schoenoplectus hallii germinate only in some wet years. Seeds mature in autumn, at which time they are dormant. Seeds come out of dormancy during winter, if buried in nonflooded, moist soil, but they remain dormant if buried in flooded soil. Nondormant seeds require flooding, light, and exposure to ethylene to germinate. One piece of apple in water (1/12 of an apple in 125 mL of water in a glass jar for a depth of 5 cm) or a 1-mol/L solution of ethephon elicited very similar (high) germination percentages and vigor of seedlings. Apple, which was shown to produce ethylene in the air space of the jar, was used in a series of experiments to better understand germination. Seeds germinated to 72% if apple was removed from the water after 1 d of incubation, and they germinated to 97% if seeds were washed and placed in fresh water after 3 d of exposure to apple. No seeds germinated in control with no apple. Seeds incubated in apple leachate for 5 d and then transferred to filter paper moistened with distilled water germinated to 90%. Minimum depth of flooding in apple leachate (no soil in jars) for optimum germination was Ն3 cm. Buried seeds of S. hallii exhibited an annual conditional dormancy/nondormancy cycle. Regardless of the month in which seeds were exhumed, they germinated to 59-100% in light in water with apple at daily alternating temperature regimes of 25Њ/15Њ, 30Њ/15Њ, and 35Њ/20ЊC, but germination at 20Њ/10ЊC (and to some extent at 15Њ/6ЊC) tended to peak in autumn to spring. Thus, seeds can germinate throughout the summer if flooded (ethylene production) and exposed to light. An ethylene cue for germination serves as a ''flood-detecting'' mechanism and may serve as an indirect signal that water is available for completion of the life cycle and competing species are absent.
Three species of the C 4 grass genus Muhlenbergia-M. frondosa, M. sobolifera, and M. schreberiwere collected from forest understory sites in northeastern Kansas and grown in a growth chamber at 1,500, 150, and 15-25 fjimol m~2 s -1 photosynthetic photon flux density (PPFD). Leaf, stem, root, and total biomasses and several morphological and anatomical characteristics were measured after 35-38 days. Results were compared with similar measurements for M. cuspidata collected from exposed prairie sites. Although all species grew maximally at the highest PPFD, M. sobolifera grew equally well at medium PPFD. Few anatomical changes were correlated with changes in PPFD except leaf thickness, which increased with increasing PPFD. The results indicate that, while the understory species of Muhlenbergia can adjust morphologically to some extent to shaded environments, they produce more biomass at higher PPFD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.