Matrix metalloproteinases (MMPs) are endopeptidases that play pivotal roles in promoting tumor disease progression, including tumor angiogenesis. In many solid tumors, MMP expression could be attributed to tumor stromal cells and is partially regulated by tumor-stroma interactions via tumor cell-associated extracellular matrix metalloproteinase inducer (EMMPRIN). The role of EMMPRIN during tumor angiogenesis and growth was explored by modulating EMMPRIN expression and activity using recombinant DNA engineering and neutralizing antibodies. In human breast cancer cells, changes in EMMPRIN expression influenced vascular endothelial growth factor (VEGF) production at both RNA and protein levels. In coculture of tumor cells and fibroblasts mimicking tumor-stroma interactions, VEGF expression was induced in an EMMPRIN- and MMP-dependent fashion, and was further enhanced by overexpressing EMMPRIN. Conversely, VEGF expression was inhibited by suppressing EMMPRIN expression in tumor cells, by neutralizing EMMPRIN activity, or by inhibiting MMPs. In vivo, EMMPRIN overexpression stimulated tumor angiogenesis and growth; both were significantly inhibited by antisense suppression of EMMPRIN. Expression of both human and mouse VEGF and MMP, derived from tumor and host cells, respectively, was regulated by EMMPRIN. These results suggest a novel tumor angiogenesis mechanism in which tumor-associated EMMPRIN functionally mediates tumor-stroma interactions and directly contributes to tumor angiogenesis and growth by stimulating VEGF and MMP expression.
Elevated generation of reactive oxygen species (ROS) by endothelial enzymes, including NADPH-oxidase, is implicated in vascular oxidative stress and endothelial proinflammatory activation involving exposure of vascular cell adhesion molecule-1 (VCAM-1). Catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet/endothelial cell adhesion molecule 1 (PECAM-1) bind specifically to endothelium and inhibit effects of corresponding ROS, H(2)O(2), and superoxide anion. In this study, anti-PECAM/SOD, but not anti-PECAM/catalase or nontargeted enzymes, including polyethylene glycol (PEG)-SOD, inhibited 2- to 3-fold VCAM expression caused by tumor necrosis factor (TNF), interleukin-1β, and lipopolysaccharide. Anti- PECAM/SOD, but not nontargeted counterparts, accumulated in vascular endothelium after intravenous injection, localized in endothelial endosomes, and inhibited by 70% lipopolysaccharide-caused VCAM-1 expression in mice. Anti-PECAM/SOD colocalized with EEA-1-positive endothelial vesicles and quenched ROS produced in response to TNF. Inhibitors of NADPH oxidase and anion channel ClC3 blocked TNF-induced VCAM expression, affirming that superoxide produced and transported by these proteins, respectively, mediates inflammatory signaling. Anti-PECAM/SOD abolished VCAM expression caused by poly(I:C)-induced activation of toll-like receptor 3 localized in intracellular vesicles. These results directly implicate endosomal influx of superoxide in endothelial inflammatory response and suggest that site-specific interception of this signal attained by targeted delivery of anti-PECAM/SOD into endothelial endosomes may have anti-inflammatory effects.
As an antagonist of not only GP IIb/IIIa but also alpha(v)beta3, abciximab may provide additional clinical benefit in preventing alpha(v)beta3-mediated effects such as thrombin generation, clot retraction, or smooth muscle cell migration and proliferation. Abciximab binds with equivalent affinity to both GP IIb/IIIa and alphavss3 and redistributes between the 2 integrin receptors in vitro. Abciximab has been previously shown to circulate on platelets for up to 2 weeks. Taken together, these findings suggest that abciximab may have the ability to inhibit both GP IIb/IIIa and alpha(v)beta3 for extended periods.
Integrins of the ␣v family, such as ␣v3 and ␣v5, are implicated in tumor-induced angiogenesis; but their role in tumor growth has not been fully explored. CNTO 95 is a fully human antibody that recognizes the ␣v family of integrins and is likely to be less immunogenic in humans compared to chimeric or humanized antibodies. CNTO 95 bound to purified ␣v3 and ␣v5 with a
Platelet endothelial cell adhesion molecule (PECAM-1), a member of the Ig superfamily, is found on endothelial cells and neutrophils and has been shown to be involved in the migration of leukocytes across the endothelium. Adhesion is mediated, at least in part, through binding interactions involving its first N-terminal Ig-like domain, but it is still unclear which sequences in this domain are required for in vivo function. Therefore, to identify functionally important regions of the first Ig-like domain of PECAM-1 that are required for the participation of PECAM-1 in in vivo neutrophil recruitment, a panel of mAbs against this region of PECAM-1 was generated and characterized in in vitro adhesion assays and in an in vivo model of cutaneous inflammation. It was observed that mAbs that disrupted PECAM-1-dependent homophilic adhesion in an L cell aggregation assay also blocked TNF-α-induced intradermal accumulation of neutrophils in a transmigration model using human skin transplanted onto SCID mice. Localization of the epitopes of these Abs indicated that these function-blocking Abs mapped to specific regions on either face of domain 1. This suggests that these regions of the first Ig-like domain may contain or be close to binding sites involved in PECAM-1-dependent homophilic adhesion, and thus may represent potential targets for the development of antiinflammatory reagents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.