HCl, HNO3 and H2SO4 are implicated in atmospheric processes in areas such as polar stratospheric clouds in the stratosphere. Ternary complexes of HCl, HNO3 and H2SO4 were investigated by ab initio calculations at B3LYP level of theory with aug-cc-pVTZ and aug-cc-pVQZ basis sets, taking into account basis set superposition error (BSSE). The results were assessed in terms of structures (five hexagonal cyclic structures and two quasi-pentagonal cyclic structures), inter-monomeric parameters (all ternary complexes built three hydrogen bonds), energetics (seven minima obtained), infrared harmonic vibrational frequencies (red shifting of complexes from monomers), and relative stability of complexes, which were favorable when the temperature decreases under stratospheric conditions, from 298 K to 188 K, and in concrete, at 210 K, 195 K and 188 K.
Strong acids such as HCl (C), HNO3 (N) and H2SO4 (S) acquire relevance in Polar Stratospheric Clouds (PSCs) and aerosols in which nucleation processes occur. Ab initio quantum chemical studies of aggregates were performed for these strong acids. Structures were calculated using DFT methods with the B3LYP hybrid functional and aug-cc-pVTZ basis set. As an initial constraint, an H2SO4 moiety was placed in all candidate structures. A total of 11 optimized structures was found: a global minimum (CSN-a) plus ten local minima on the Potential Energy Surface (PES). The global minimum aggregate gave four hydrogen bonds, yielding a hexagonal ring in its structure. HNO3 acts as proton donor in all clusters; nevertheless, using trans-H2SO4 as the proton donor yielded the most stable structures, whereas HCl acts mainly as a proton donor/acceptor. Real harmonic frequencies, IR spectra, and inter-monomeric parameters were obtained. CSN-a symmetric stretching modes were shifted to 2805.56 cm(-1) and 3520.00 cm(-1) for H-Cl modes, while O-H modes shifted to 3256.87 cm(-1) and 3362.47 cm(-1). On the other hand, relative stabilities improved for 5 of the 11 aggregates when the temperature decreased from 298 K to 210 K, 195 K and 188 K. The aggregate CSN-f remained unstable only at 210 K. Moreover, the relative Gibbs free energy, ΔG(0-298K) was -9.26 kcalmol(-1) with respect to CSN-a; relative reaction Gibbs free energy [Δ(ΔG)] values ranged from 0.0 at 298 K, to -6.9 kcalmol(-1) at 188 K. It seems that CSN aggregates remain slightly more stable than CNS aggregates with a HNO3 moiety when the temperature decreases from 298 to 188 K. Five structures remained relatively stable under both study conditions.
The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved -divided in two groups, one with HNO3 moiety, second with H2SO4 moiety- after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (∆E), relative reaction Gibbs free energies ∆(∆G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.