Endosulfan is a broad spectrum organochlorine pesticide that is still widely in use in many developing countries. Following application, endosulfan can get to watercourses through surface runoff from agricultural fields and disturb the non-target aquatic animals including freshwater fish species. Given that the activity of the enzyme acetylcholinesterase (AChE) is one of the most recurrently used biomarkers of exposure to pesticides and there are controversial results concerning the effects of endosulfan exposure and AChE activity in fish, the aim of the present study was to evaluate the effects of endosulfan in brain AChE activity and its gene expression pattern using adult zebrafish (Danio rerio) as an animal model. Moreover, we have analyzed the effects of endosulfan exposure in different parameters of zebrafish swimming activity and in long-term memory formation. After 96 h of exposition, fish in the 2.4 μg endosulfan/L group presented a significant decrease in AChE activity (9.44 ± 1.038 μmol SCh h(-1) mg protein(-1); p=0.0205) when compared to the control group (15.87 ± 1.768 μmol SCh h(-1) mg protein(-1); p=0.0205) which corresponds to approximately 40%. The down-regulation of brain AChE activity is not directly related with the transcriptional control as demonstrated by the RT-qPCR analysis. Our results reinforce AChE activity inhibition as a pathway of endosulfan-induced toxicity in brain of fish species. In addition, exposure to 2.4 μg endosulfan/L during 96 h impaired all exploratory parameters evaluated: decreased line crossings (≈21%, 273.7 ± 28.12 number of line crossings compared to the control group 344.6 ± 21.30, p=0.0483), traveled distance (≈20%, 23.44 ± 2.127 m compared to the control group 29.39 ± 1.585, p=0.0281), mean speed (≈25%, 0.03 ± 0.003 m/s compared to the control group 0.04 ± 0.002, p=0.0275) and body turn angle (≈21%, 69,940 ± 4871 absolute turn angle compared to the control group 88,010 ± 4560, p=0.0114). These results suggest that endosulfan exposure significantly impairs animals' exploratory performance, and potentially compromises their ecological and interspecific interaction. Our results also showed that the same endosulfan exposure did not compromise animals' performance in the inhibitory avoidance apparatus. These findings provide further evidence of the deleterious effects of endosulfan exposure in the nervous system.
The Vicuña oil tanker exploded in Paranaguá Bay (South of Brazil), during methanol unloading operations in front of Paranaguá Harbour, on November 15th, 2004, releasing a large amount of bunker oil and methanol. Two weeks after the accident, the acute effects of the Vicuña Oil Spill (VOS) were evaluated in the demersal catfish Cathorops spixii, comparing a contaminated (at the spill site) and a reference site inside the Bay. Data were compared to previous measurements, taken before the accident, in the same species, from the same sites. The physiological biomarkers were the ones that best reflected acute effects of the spill: plasma osmolality, chloride, calcium, magnesium, and potassium. Morphological (liver and gill histopathology) and genetic (piscine micronucleus and DNA strand breaks) biomarkers revealed that damage was already present in fishes from both reference and contaminated sites inside the Bay. Thus, the reference site is not devoid of contamination, as water circulation tends to spread the contaminants released into other areas of the Bay. Acute field surveys of oil spill effects in harbour areas with a long history of contamination should thus be viewed with caution, and whenever possible previous evaluations should be considered for proper appraisal of biomarker sensitivity, especially in mobile bioindicators such as fish.
Microcystins (MCs) constitute a family of cyanobacterial toxins, with more than 80 variants. These toxins are able to induce hepatotoxicity in several organisms mainly through the inhibition of protein phosphatases PP1 and PP2A and oxidative stress generation. Since recent evidence shows that MCs can either accumulate in brain or alter behavior patterns of fish species, in this study we tested the in vitro and in vivo effects of MC-LR at different concentrations on acetylcholinesterase (AChE) activity in zebrafish brain. In vivo studies showed that 100 μg/L MC-LR led to a significant increase in the AChE activity (27%) when zebrafish were exposed to the toxin dissolved in water, but did not cause any significant changes when injected intraperitoneally. In addition, semiquantitative RT-PCR analysis demonstrated that 100 μg/L MC-LR exposure also increased ache mRNA levels in zebrafish brain. The in vitro assays did not reveal any significant changes in AChE activity. These findings provide the first evidence that brain AChE is another potential target for MCs and suggest that the observed increases in AChE enzymatic activity and in ache transcript levels after MC-LR exposure depend, at least partially, on branchial uptake or ingestion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.