Soil contamination by trace elements (TEs) is a problem of great concern since the industrial revolution. However, not all TEs are essentially toxic, and several micronutrients such as boron (B) play essential roles during plant development and, in this case, B acts in plants as a structural element. Soil B levels above 3.0 mg dm–3 may be toxic to many plants and the greatest input of B to the environment occurs through the anthropic way. An environmentally promising alternative is phytoremediation, in which contaminant‐tolerant plants are used to remove or stabilize TEs in soils. Therefore, this work has been carried out to aim C. mucunoides’ tolerance to increasing B concentrations and its potential as a phytoremediator. We found out that C. mucunoides tolerates B doses up to 480 mg dm−3, the B uptaken is transported at a 1:1 ratio between root and shoot, suggesting that C. mucunoides can be used as a phytostabilizer and phytoextractor due to its potential to be used in phytoremediation techniques because it can tolerate toxic concentrations of B.
Lead (Pb) is a heavy metal considered one of the major soil pollutants. Phytoremediation is a sustainable and economically viable biological method for reducing Pb content in the environment. Inga uruguensis is a tree legume species that has characteristics favorable to phytoremediation, such as rapid growth and high biomass production. The objective of this work was an initial evaluation of tolerance and phytoremediation potential of I. uruguensis to Pb. The experiment was carried out in a greenhouse. In addition to the control, soil contamination was carried out with the following Pb doses: 100, 200, 300, 400, and 500 mg.dm³, with 5 repetitions in each treatment, totaling 30 vases. We assessed growth, number and mass of nodules, chlorophyll content, ureids, amino acid, protein and soluble carbohydrates in leaves, roots and nodules, tolerance index, dry matter, and tissues Pb content of I. uruguensis. The data were analyzed by the Tukey test using R and SISVAR software. There was no negative effect of Pb in soil on I. uruguensis growth, the symbiotic relationship with rhizobia was kept, even at high Pb content and the tolerance index was not lower than 0.69. Inga uruguensis has initial tolerance and potential to be used as phytoremediation in soils contaminated by Pb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.