Xylella fastidiosa subsp. pauca is genetically diverse and has many vector species. However, there is limited information on vector specificity and efficiency for different sequence types (STs) within the pathogen subspecies. Both STs of X. fastidiosa and vectors differ in their associations with plants; therefore, assessment of vector competence should include the standardized vector acquisition ability of bacteria from artificial diets. This work aimed to adapt and validate an in vitro acquisition system for strains of X. fastidiosa that cause citrus variegated chlorosis, and to compare the transmission efficiency of STs of subsp. pauca by different species of sharpshooter vector. First, acquisition and transmission of ST13 by Bucephalogonia xanthophis and Macugonalia leucomelas was tested using an artificial diet with bacteria grown on minimum defined medium (X. fastidiosa medium) with or without 1% galacturonic acid (GA). Subsequently, four sharpshooter species (B. xanthophis, M. leucomelas, M. cavifrons, and Sibovia sagata) were compared as vectors of ST13 acquired from artificial diets, and four STs of subsp. pauca (11, 13, 65, and 70) were tested for acquisition and transmission by M. leucomelas. The artificial system allowed efficient acquisition and transmission of ST13 to plants, with no differences between the media tested. ST13 was transmitted more efficiently by B. xanthophis and M. leucomelas when compared with M. cavifrons and S. sagata. Different STs influenced acquisition and transmission rates by M. leucomelas. The differences in vector competence, despite the standardized acquisition system, suggest that ST–vector foregut or vector–plant interactions may influence bacterial acquisition, retention and inoculation by the insect.
Plant pathogenic bacteria may influence vector behavior by inducing physiological changes in host plants, with implications for their spread. Here, we studied the effects of maize bushy stunt phytoplasma (MBSP) on the host selection behavior of the leafhopper vector, Dalbulus maidis (DeLong and Wolcott). Choice assays contrasting leaves of healthy (mock-inoculated) vs. infected maize (Zea mays L.) were conducted during the asymptomatic and symptomatic phases of plant infection, with leafhopper males or females previously exposed to infected plants (bacteriliferous insects) or not. In each assay, 40 adults were released in choice arenas where only the leaves of two plants from each treatment were offered and visible, and the insects landed on the leaves were counted 1, 2, 3, 5, 7, 9, 11 and 23 h after release. During the asymptomatic phase of plant infection, an effect was observed only on bacteriliferous females, who preferred leaves of healthy plants 5 h after release or later. The symptomatic phase triggered a pull–push effect on non-bacteriliferous females, who were first attracted to symptomatic leaves but hours later moved to healthy leaves. Non-bacteriliferous males initially preferred symptomatic leaves (up to 5 h after release) and later became equally distributed between treatments. Bacteriliferous males and females initially did not discriminate between healthy and symptomatic leaves, but only the females tended to move to healthy leaves 9 h after release. Oviposition was drastically reduced on symptomatic leaves. The changes in vector behavior induced by MBSP favor its primary spread, since bacteriliferous females prefer healthy leaves at early (asymptomatic) stages of the crop. At later stages, secondary spread may be favored because non-bacteriliferous females are initially attracted to infected (symptomatic) leaves, allowing pathogen acquisition and subsequent transmission as they move to healthy plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.