In this paper, we present the cytomolecular analysis of a population of Abracris flavolineata collected in the largest fragment of the Brazilian Atlantic forest, the Iguaçu National Park. The diploid number in males was 23 (22+X0), with two large pairs (1–2), 7 medium (3–9), 2 small (10–11) and the X chromosome of medium size. Heterochromatic blocks were evident in the pericentromeric regions of all chromosomes. Heterogeneity in the distribution of heterochromatin was observed, with a predominance of DAPI+ blocks. However, some chromosomes showed CMA3+ blocks and other DAPI+/CMA3+ blocks. The 18S rDNA sites were distributed on the short arms of 5 pairs. In two of these pairs, such sites were in the same chromosome bearing 5S rDNA, and one of the bivalents, they were co-located. Histone H3 genes were found on one bivalent. The results added to the existing cytogenetic studies provided evidence of great karyotypic plasticity in the species. This pliancy may be the result of vicariant events related to the geographical distribution of different populations of A. flavolineata.
Tropidacris Scudder, 1869 is a genus widely distributed throughout the Neotropical region where speciation was probably promoted by forest reduction during the glacial and interglacial periods. There are no cytogenetic studies of Tropidacris, and information allowing inference or confirmation of the evolutionary events involved in speciation within the group is insufficient. In this paper, we used cytogenetic markers in two species, Tropidacris collaris (Stoll, 1813) and Tropidacris cristata grandis (Thunberg, 1824), collected in different Brazilian biomes. Both species exhibited 2n=24,XX for females and 2n=23,X0 for males. All chromosomes were acrocentric. There were some differences in the karyotype macrostructure, e.g. in the chromosome size. A wide interspecific variation in the chromosome banding (C-banding and CMA3/DAPI staining) indicated strong differences in the distribution of repetitive DNA sequences. Specifically, Tropidacris cristata grandis had a higher number of bands in relation to Tropidacris collaris. FISH with 18S rDNA revealed two markings coinciding with the NORs in both species. However, two analyzed samples of Tropidacris collaris revealed a heterozygous condition for the rDNA site of S10 pair. In Tropidacris collaris, the histone H3 genes were distributed on three chromosome pairs, whereas in Tropidacris cristata grandis, these genes were observed on 14 autosomes and on the X chromosome, always in terminal regions. Our results demonstrate that, although the chromosome number and morphology are conserved in the genus, Tropidacris cristata grandis substantially differs from Tropidacris collaris in terms of the distribution of repetitive sequences. The devastation and fragmentation of the Brazilian rainforest may have led to isolation between these species, and the spreading of these repetitive sequences could contribute to speciation within the genus.
SummaryThe family Hydrophilidae is the largest group of the superfamily Hydrophiloidea to which the largest aquatic Polyphaga are allocated. Phylogenetic studies based on morphological characters suggest that in Hydrophilidae, specifically in Hydrophilini, the body size is related to the group evolution. Despite these morphological analyses, cytogenetic studies of this family are scarce, and there is not a correlation of morphologic and cytogenetic data outlined for this group. In this paper, we analyzed seventeen specimens of Tropisternus mutatus sapucay Fernández & Bachman from rivers from two localities in Southern Brazil. Chromosome analyses showed 2n=18 with a sex chromosome system of the Xy p type (2n=18=16+Xy p ). All the autosomes, including the X p chromosome, were metacentric. The basal number and the possible divergence among the different Hydrophilidae species analyzed to date, as well as the phylogeny proposed for Hydrophilini, are discussed.
Many species of grasshopper have an XX/XO sex chromosome system, including Tropidacris cristata grandis (23, XX/XO). The X chromosome behaves differently from the autosomes, but little is known about its origin and molecular composition. To better understand the genomic composition and evolutionary processes involved in the origin of the sex chromosomes, we undertook an analysis of its meiotic behavior, heterochromatin distribution and microdissection in T. c. grandis. Analysis of meiotic cells revealed a difference in the behavior of the X chromosome compared to the autosomes, with different patterns of condensation and cellular arrangement. Heterochromatic terminal blocks were predominant. The chromosome painting revealed a bright block in the centromeric/pericentromeric region of the X chromosome and slight markings in the other regions. In the autosomes, the X chromosome probe hybridized in the centromeric/pericentromeric region, and hybridization signals on terminal regions corresponding to the heterochromatic regions were also observed. The results showed that the X chromosome contains a significant amount of repetitive DNA. Based on the hybridization pattern, it is possible that the autosomes and sex chromosomes of T. c. grandis have a similar composition of repetitive DNAs, which could mean that the X chromosome has an autosomal origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.