In this work the development results of the TRI-TIUM project is presented. The main objective of the project is the construction of a near real-time monitor for low activity tritium in water, aimed at in-situ surveillance and radiological protection of river water in the vicinity of nuclear power plants. The European Council Directive 2013/51/Euratom requires that the maximum level of tritium in water for human consumption to be lower than 100 Bq/L. Tritium levels in the cooling water of nuclear power plants in normal operation are much higher than the levels caused by the natural and cosmogenic components, and may easily surmount the limit required by the Directive. The current liquid-scintillation measuring systems in environmental radioactivity laboratories are sensitive to such low levels, but they are not suitable for real-time monitoring. Moreover, there is no currently available device with enough sensitivity and monitoring capabilities that could be used for surveillance of the cooling water of nuclear power plants. A detector system based on scintillation fibers read out by photomultiplier tubes (PMTs) or silicon photomultiplier (SiPM) arrays is under development for in-water tritium measurement. This detector will be installed in the vicinity of Almaraz nuclear power plant (Spain) in Spring 2019. An overview of the project development and the results of first prototypes are presented.
Antibiotic pollution of freshwaters and even food products has become an important concern worldwide. Hence, it is of utmost importance to develop cost-effective and reliable devices that can provide information on the presence of such contaminants to the general population. In the present work, zinc oxide (ZnO) nanotetrapods (NTP) produced via a high yield laser processing approach were used as transducers in a luminescent-based immunosensor to detect tetracycline (TC). These tetrapodal structures present needleshaped branches with a high aspect ratio, exhibiting lengths from hundreds of nanometers to a few micrometers and an average thickness of tens of nanometers, providing a high surface area for bioreceptor immobilization and analyte reaction, which is quite desirable in a transducer material. Besides, these ZnO NTP display intense photoluminescence (PL) at room temperature, making such a signal rather promising for transduction. Indeed, the intensity of the ZnO PL signal was seen to correlate with the TC concentration. The PL quenching with increasing analyte concentration is explained considering the rise in the bending of the electronic bands of the semiconductor near its surface due to increased charge density at this region, induced by the interaction between the bioreceptor (anti-TC antibodies) and the TC molecules. As a larger depletion width (and potential barrier) is promoted near the surface, the excitonic recombination probability is reduced and, consequently, the PL intensity in the ultraviolet spectral region, allowing us to use this relationship as a sensing mechanism. This information enabled us to define a calibration curve for TC quantification in the 0.001 to 1 μg L −1 range, which is the range of interest of this antibiotic in freshwaters. A limit of detection (LOD) of ∼1.2 ng L −1 is reported, corresponding to one of the lowest LOD found in the literature for this antibiotic, indicating that the present ZnO NTPbased biosensors rival the current state-of-the-art ones.
Zinc oxide (ZnO) is a wide bandgap semiconductor material that has been widely explored for countless applications, including in biosensing. Among its interesting properties, its remarkable photoluminescence (PL), which typically exhibits an intense signal at room temperature (RT), arises as an extremely appealing alternative transduction approach due to the high sensitivity of its surface properties, providing high sensitivity and selectivity to the sensors relying on luminescence output. Therefore, even though not widely explored, in recent years some studies have been devoted to the use of the PL features of ZnO as an optical transducer for detection and quantification of specific analytes. Hence, in the present paper, we revised the works that have been published in the last few years concerning the use of ZnO nanostructures as the transducer element in different types of PL-based biosensors, namely enzymatic and immunosensors, towards the detection of analytes relevant for health and environment, like antibiotics, glucose, bacteria, virus or even tumor biomarkers. A comprehensive discussion on the possible physical mechanisms that rule the optical sensing response is also provided, as well as a warning regarding the effect that the buffer solution may play on the sensing experiments, as it was seen that the use of phosphate-containing solutions significantly affects the stability of the ZnO nanostructures, which may conduct to misleading interpretations of the sensing results and unreliable conclusions.
Tritium is released abundantly to the environment by nuclear power plants (NPP), as a product of neutron capture by hydrogen and deuterium. In normal running conditions, released cooling waters may contain levels of tritium close to or even larger than the maximum authorised limit for human consumption (drinking and irrigation). The European Council Directive 2013/51/Euratom requires a maximum level of tritium in water for human consumption lower than 100 Bq=L. Current monitoring of tritium activity in water by liquid scintillating method takes about two days and can only be carried out in a dedicated laboratory. This system is not appropriate for real time monitoring. At present, there exists no available detector device with enough sensitivity to monitor waters for human consumption with high enough sensitivity. The goal of the TRITIUM project is to build a tritium monitor capable to measure tritium activities with detection limit close to 100Bq=L, using instrumentation technique developed in recent years for Nuclear and Particle Physics, such as scintillating fibres and silicon photomultipliers (SiPM). In this paper the current status of the TRITIUM project is presented and he results of first prototypes are discussed. A detector system based on scintillating fibers read out either photomultiplier tubes (PMTs) or silicon photomultiplier (SiPM) arrays is under development and will be installed in the vicinity of Almaraz nuclear power plant (Cáceres, Spain) by the fourth term of 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.