Searches are performed for both promptlike and long-lived dark photons, A^{'}, produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A^{'}→μ^{+}μ^{-} decays and a data sample corresponding to an integrated luminosity of 1.6 fb^{-1} collected with the LHCb detector. The promptlike A^{'} search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A^{'} search is restricted to the low-mass region 214
† Deceased. We dedicate this paper to Giorgio's memory. We will strive to make this experiment a great success and a tribute to his memory. He will be sorely missed. AbstractThe MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this paper is to give an overview of the MoEDAL physics reach, which is largely complementary to the programs of the large multi-purpose LHC detectors ATLAS and CMS. project grant; the V-P Research Notes 1 Defined to be a convolution of the efficiency and acceptance 2 The concept of Dirac (magnetic) charge is presented in Section 5. 3 If |n| = 1, this is only true for magnetic charge coupled to 2 H(S = 1, |q| = 1/2), 8 Li(S = 2, |q| = 3/2) and 10 B(S = 3, |q| = 5/2). 4 The reader should notice that the two-loop processes of Fig. 28(b), which couple the IC gluons to the fermionic SM sector suffer, in addition to the loop suppression, an additional helicity suppression, as compared to the diagram of Fig, 28(a), and are therefore non-leading contributions.
We discuss and compare the effects of one extra dimension in the Randall Sundrum models on the evaluation of the Casimir force between two parallel plates. We impose the condition that the result reproduce the experimental measurements within the known uncertainties in the force and the plate separation, and get an upper bound kR 20 if the curvature parameter k of AdS 5 is equal to the Planck scale. Although the upper bound decreases as k decreases, kR ∼ 12, which is the required value for solving the hierarchy problem, is consistent with the Casimir force measurements.For the case where the 5 th dimension is infinite, the correction to the Casimir force is very small and negligible.
MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
Extensions of the supersymmetric standard model to SU(2IL XU(l),xn XU(l)B-L and to SU(2), X SU( 2In XU( 1 with Higgs triplets are considered. Calculations of all possible contributions to the anomalous magnetic moment of the muon are made and the resulting constraints on the masses of supersymmetric partners are examined in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.