The pattern of the Drosophila eggshell is determined by the establishment of a complex and stereotyped pattern of cell fates in the follicular epithelium of the ovary. Localized activation of the Epidermal growth factor receptor (Egfr) is essential for this patterning. Modulation of Egfr pathway activity in time and space determines distinct fates at their appropriate locations, but the details of how Egfr signaling is regulated and how the profile of Egfr activity corresponds to cell fate remain unclear. Here we analyze the effect of loss of various Egfr regulators and targets on follicle cell patterning, using a marker for follicle cell fate, and on the mature eggshell phenotype, using a novel eggshell marker. We show, contrary to current patterning models, that feedback regulation of Egfr activity by the autocrine ligand Spitz and the inhibitor Argos is not necessary for patterning. Given the cell-autonomous nature of the mutant phenotypes we observed, we propose instead that the pattern of cell fates is generated by spatial information derived directly from the germline ligand Gurken, without a requirement for subsequent patterning by diffusible Egfr regulators in the follicular epithelium.
Spatially restricted epidermal growth factor receptor (EGFR) activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.
A relatively small number of signaling pathways drive a wide range of developmental decisions, but how this versatility in signaling outcome is generated is not clear. In the Drosophila follicular epithelium, localized epidermal growth factor receptor (EGFR) activation induces distinct cell fates depending on its location. Posterior follicle cells respond to EGFR activity by expressing the T-box transcription factors Midline and H15, while anterior cells respond by expressing the homeodomain transcription factor Mirror. We show that the choice between these alternative outputs of EGFR signaling is regulated by antiparallel gradients of JAK/STAT and BMP pathway activity and that mutual repression between Midline/H15 and Mirror generates a bistable switch that toggles between alternative EGFR signaling outcomes. JAK/STAT and BMP pathway input is integrated through their joint and opposing regulation of both sides of this switch. By converting this positional information into a binary decision between EGFR signaling outcomes, this regulatory network ultimately allows the same ligand-receptor pair to establish both the anterior-posterior (AP) and dorsal-ventral (DV) axes of the tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.