Toads (Rhinella arenarum) received training with a novel incentive procedure involving access to solutions of different NaCl concentrations. In Experiment 1, instrumental behavior and weight variation data confirmed that such solutions yield incentive values ranging from appetitive (deionized water, DW, leading to weight gain), to neutral (300 mM slightly hypertonic solution, leading to no net weight gain or loss), and aversive (800 mM highly hypertonic solution leading to weight loss). In Experiment 2, a downshift from DW to a 300 mM solution or an upshift from a 300 mM solution to DW led to a gradual adjustment in instrumental behavior. In Experiment 3, extinction was similar after acquisition with access to only DW or with a random mixture of DW and 300 mM. In Experiment 4, a downshift from DW to 225, 212, or 200 mM solutions led again to gradual adjustments. These findings add to a growing body of comparative evidence suggesting that amphibians adjust to incentive shifts on the basis of habit formation and reorganization.
Serous (granular or venom) glands occur in the skin of almost all species of adult amphibians, and are thought to be the source of a great diversity of chemical compounds. Despite recent advances in their chemistry, odorous volatile substances are compounds that have received less attention, and until now no study has attempted to associate histological data with the presence of these molecules in amphibians, or in any other vertebrate. Given the recent identification of 40 different volatile compounds from the skin secretions of H. pulchellus (a treefrog species that releases a strong odour when handled), we examined the structure, ultrastructure, histochemistry, and distribution of skin glands of this species. Histological analysis from six body regions reveals the presence of two types of glands that differ in their distribution. Mucous glands are homogeneously distributed, whereas serous glands are more numerous in the scapular region. Ultrastructural results indicate that electron-translucent vesicles observed within granules of serous glands are similar to those found in volatile-producing glands from insects and also with lipid vesicles from different organisms. Association among lipids and volatiles is also evidenced from chemical results, which indicate that at least some of the volatile components in H. pulchellus probably originate within the metabolism of fatty acids or the mevalonate pathway. As odorous secretions are often considered to be secreted under stress situations, the release of glandular content was assessed after pharmacological treatments, epinephrine administrated in vivo and on skin explants, and through surface electrical stimulation. Serous glands responded to all treatments, generally through an obvious contraction of myoepithelial cells that surround their secretory portion. No response was observed in mucous glands. Considering these morpho-functional results, along with previous identification of volatiles from H. pulchellus and H. riojanus after electrical stimulation, we suggest that the electron-translucent inclusions found within the granules of serous glands likely are the store sites of volatile compounds and/or their precursors. Histochemical and glandular distribution analyses in five other species of frogs of the hylid tribe Cophomantini, revealed a high lipid content in all the species, whereas a heterogeneous distribution of serous glands is only observed in species of the H. pulchellus group. The distribution pattern of serous glands in members of this species group, and the odorous volatile secretions are probably related to defensive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.